
Exercise 1. (From “Abstractions for Mobile Computation”)

This example emphasizes the mobility aspects of ambients, and the fact that an ambient may be transported from
one place to another without having to know the exact route to be followed. A passenger on a train, for example, only
needs to know the destination station, and need not be concerned with the intermediate stations a train may or may not
stop at.

In this example, there are three train stations, represented by ambients: stationA, stationB and stationC (of course,
these particular ambients will never move). There are three trains, also represented by ambients: a train from stationA
to stationB originating at stationA, and two trains between stationB and stationC, one originating at each end. There
are two passengers, again represented by ambients; joe and nancy. Joe wants to go from stationA to stationC by chang-
ing trains at stationB; nancy wants to go the other way.

We begin by defining a parametric process that can be instantiated to trains going between different stations at
different speeds. The parameters are: stationX: the origin station; stationY: the destination station; XYatX, the tag that
the train between X and Y displays when stationed at X; XYatY, the tag that the train between X and Y displays when
stationed at Y; tripTime, the time a train takes to travel between origin and destination.

The definition of a train begins with the creation of a new name, moving, that is intermittently used as the name
of the train. While the train is moving, passengers should not be allowed to (dis)embark; this is achieved by keeping
moving a secret name. The train begins as an ambient with name moving, and contains a single recursive thread that
shuttles the train back and forth between two stations. Initially, the train declares itself to be a train between X and Y
stationed at X, and waits some time for passengers to enter and exit. Then it becomes moving, so passengers can no
longer (dis)embark. It exits the origin station, travels for the tripTime, enters the destination station, and declares itself
to be the train between X and Y at Y. Again, passengers can (dis)embark during the wait time at the station. Then the
train becomes moving again, goes back the other way, and then repeats the whole process.

Next we have the configuration of stations and trains. We create fresh names for the three stations and for the train
tags. Then we construct three ambients for the three stations, each containing an appropriately instantiated train.

Finally, we have the code for the passengers. Joe’s itinerary is to enter stationA, wait to enter the train from A to
B when it is stationed at A, exit at B, wait for the train from B to C when it is stationed at B, exit at C and finally exit
stationC. During the time that joe is waiting to exit a train, he is blocked waiting for the train to acquire the appropriate
tag. The train could change tags at intermediate stations, but this would not affect joe, who is waiting to exit at a par-

let train(stationX stationY XYatX XYatY tripTime) =
(ν moving) // assumes the train originates inside stationX

moving[rec T.
be XYatX. wait 2.0.
be moving. out stationX. wait tripTime. in stationY.
be XYatY. wait 2.0.
be moving. out stationY. wait tripTime. in stationX.
T];

(ν stationA stationB stationC ABatA ABatB BCatB BCatC)
stationA[train(stationA stationB ABatA ABatB 10.0)] |
stationB[train(stationB stationC BCatB BCatC 20.0)] |
stationC[train(stationC stationB BCatC BCatB 30.0)] |

stationA stationB stationC

trainAB

trainBC

trainBC
joe

nancy

ticular station. When that station is reached, and the train assumes the right tag, joe will attempt to exit. However, there
is no guarantee that he will succeed. For example, joe may have fallen asleep, or there may be such a rush that joe does
not manage to exit the train in time. In that case, joe keeps shuttling back and forth between two stations until he is
able to exit at the right station.

The code for nancy is similar, except that she goes in the other direction. Given the timing of the trains, it is very
likely that nancy will meet joe on the platform at stationB.

In all this, joe and nancy are active ambients that are being transported by other ambients. Sometimes they move
of their own initiative, while at other times they move because their context moves. Note that there are two trains be-
tween stationB and stationC, which assume the same names when stopped at a station. Joe and nancy do not care which
of these two train they travel on; all they need to know is the correct train tag for their itinerary, not the “serial number”
of the train that carries them. Therefore, having multiple ambients with the same name simplifies matters.

When all these definitions are put together and activated, we obtain a real-time simulation of the system of sta-
tions, trains, and passengers. A partial trace looks like this:

(ν joe)
joe[

in stationA.
in ABatA. out ABatB.
in BCatB. out BCatC.
out stationC] |

(ν nancy)
nancy[

in stationC.
in BCatC. out BCatB.
in ABatB. out ABatA.
out stationA]

nancy: moved in stationC
nancy: moved in BCatC
joe: moved in stationA
joe: moved in ABatA
joe: moved out ABatB
nancy: moved out BCatB
joe: moved in BCatB
nancy: moved in ABatB
nancy: moved out ABatA
nancy: moved out stationA
joe: moved out BCatC
joe: moved out stationC

Exercise 4.

1)
� | � ∧ 0 �� �.

Need to show that P � � | ���and P � 0 implies P � �.
P � � | � means P � P’ | P” and P’ � ��and P” � �.
P � 0 means P � 0. Hence P’ | P” � 0.
This implies (lemma) that P’ � 0. Hence P’ � P.
Since P’ � � and P’ � P we obtain P � � by the “Basic Fact”.

2)
� | � ∧ 0 �� �.

� � �(| ||) � | � ∧ ¬(¬F | ¬0)��� � | 0 ∨ F | � ;
� �(| 0) � | 0 �� � ; �(| F) F | � �� F � �(∨ ��)(X-R)(F) � | 0 ∨ F | � �� �

� �(Trans) � | � ∧ ¬(¬F | ¬0)��� �
� �(| ¬0) ¬F | ¬0��� ¬0 �(¬ ��)(...) 0��� ¬(¬F | ¬0) ;
�(Id) � | ���� � | �

� �(Trans) � | � ∧ 0��� � | � ∧ ¬(¬F | ¬0)
� �(Trans) � | � ∧ 0��� �

where

(∨ ��) ���� �; ����� �� � �∨����� �∨��

������� �� �� �(W-L) ��∧T� �� �� �(X-L) T∧��� �� ��� ; �(Id) ��∨�� �� ��∨�� �(Cut ��) (��∨�)∧T� ��
�∨��) �(T) ��∨�� �� �∨���; ��� �� � �(W-L) �∧T� �� � �(X-L) T∧�� �� ��� �(Cut �) (��∨�)∧T� ��
��∨� �(T) ��∨���� ��∨�

(¬ ��) ���� � � ¬���� ¬�

���� � �(W-L) �∧T��� � �(X-L) T∧���� � �(¬-R) T��� ¬�∨� �(X-R) T��� �∨¬�

�(¬-L) T∧¬���� ¬� �(X-L) ¬�∧T��� ¬� �(T) ¬���� ¬�

