A Query Language
Based on the
Ambient Logic

Luca Cardelli

Microsoft Research

Giorgio Ghelli

University of Pisa

2001-07-06 Concoord - Lipari

Semistructured Data

Articles

B A tree (or graph), unordered (or ordered).

® Invented for “flexible” data representation (just like S-expressions...

f—

for semi-1rregular data like address books and bibliographies.

® Adopted by the DB community for the purpose of merging databases

from different uncoordinated sources (without a common schema).
Typically, web data that belongs to different institutions.

Unusual Data
Not really arrays/lists:

 Many children with the same label, instead of indexed children.
e Mixture of repeated and non repeated labels under a node.

Not really records:
e Many children with the same label.
e Missing/additional fields with no tagging information.

Not really variants:

* Labeled but untagged unions.

Unusual data.

* Yet, it aims to be the new universal standard for interoperability
of programming languages, databases, e-commerce...

Unusual Data Manipulation

 New “flexible” type theories are required.

* Based on the “effects” of processes over trees (Ambient Types).
 Based on tree automata (Xduce).

* New processing languages required.
e Xduce.

e Various web scripting abominations.

 New query languages required. Various approaches.
* From simple: Query existence of paths through the tree.
e To fuzzy: Query whether a tree 1s kind of similar to another one.
e To fancy: Query whether a tree 1s produced by a tree grammar.
e To popular: “SQL for trees/graphs”.

Analogies
An accidental(?) similarity between two areas:

Semistructured Data 1s the way it 1s because:

e “You cannot rely on uniform structure” of data.
Must abandon schemas based on records and tables.

* Adopt “self-describing” data structures:
Use edge-labeled trees (or graphs).

Mobile Computation 1s the way it 1s because:

* “You cannot rely on static structure” of networks.
Must abandon type systems based on records and disjoint unions.

e Adopt “self-describing” network structures:
Use edge-labeled trees (or graphs) of locations and agents.

Both arose out of the Internet, because things there are just
too dynamic for traditional notions of data and
computation.

Relevance to Concurrency and Coordination

* Immediate implication: a new, uniform, model of data and
computation on the Web, with opportunities for cross-
fertilization:

* Programming technology can be used to typecheck, navigate, and
transform both dynamic network structures and the
semistructured data they contain. Uniformly.

e Database technology can be used to search through both dynamic
network structures (“resource discovery”), and the semistructured
data they contain. Uniformly.

e This convergence is still a dream, but 1t did motivate us to
apply a particular technology developed for mobile
computation to semistructured data:

» Specification Logic = Query Logic

Concepts
Information trees I € /I (semistructured data)
Information terms F (denoting information trees)
Formulas 4 (denoting sets of information trees)
A semantics of terms [F] € 7
A semantics of formulas [4] ¢ 7T
A satisfaction (i.e. matching) relation F E 4 (i.e. [F] €[4])
A query language Q (including from F E 4 select Q")
A (naive) query semantics [Q] € S/
A table algebra for matching evaluation (i.e. for F F %9)

A (refined) query semantics / query evaluation procedure
for O, based on the table algebra. Correct w.r.t. [Q].

Semantics: Information Trees

e Qur semantic model for semistructured data:
unordered edge-labeled finite-depth trees.

* Just to make 1t precise:
A 1s a countable collection of labels; m, n, ..
e *Tis the collection of information trees I
e The empty multiset, { }* is in S/ .
A root.
e If misin A and 7 is in 9/,

then the singleton multiset {(m, I)}*is in 7.
An edge labeled m, leading to 1.

® 9Tis closed under multiset union [J*;; I,
where J 1s a (possibly infinite) index set.
The root-merge of all the /..

Syntax: Information Terms

F =
0 denoting the empty multiset
m|[F] denoting a singleton multiset
F\F denoting binary multiset union
[0] £ 0 where 0 & (W
[n[FI] & mI[FTI where m[l] & {(m D}*
[F’IF”] & [F’]JI[F”] where I’|I” & IutI”

e Often, m[0] 1s written m[], or stmply m.

e Define an equivalence = such that F' = F’ift [F]| = [F].

Equivalence of Information Term

F=F
F=F = F=F
F=F, 6 F =F" = F=F”

F=F = m[F]=m|[F’]
F=F = FIF’=FI|F”

FI10=F

FIF=FI\F
(FIF)IF”=FI|(F’|F”)
NB.: F|F’#F (these are multisets)

F=F iff [F]=[F]

Example
Articles|
Paper|
Author|[Cardelli] | Author[Gordon] |
Title [Anywhere] |
Year[2000] |
Conf[POPL]
]
Paper|
Author[Ghelli] |
Title[Recursive] |
Proceedings[VLDB] |
Year[1998] |
Editor[SV]

|

The Query Logic

ADBed::= Formulas (N 1s a name n or a variable x)
T true
A negation
ANB conjunction
dx.A existential quantification over label variables
n~-n label comparison (e.g. equality, regexp match..)
0 root
N[l edge
ANB composition
X tree variable
=) &%) existential quantification over tree variables
a recursion variable
nE.A recursive formula (least fixpoint)

& may occur only positively in A

F|= T

=, A
EAAB
E IxA
FE n
FE O

FF, n[#A]
FFp%I%

FE X
FE,IXSA
FE, u&EsA

'O'O'O'O'O'O

Satisfaction (first try)
» “Match a database F to a query %4, collect matches in p.”

200 0 A A A

" sgngsess”, bt g
~FE 9 L b fnifs j
FE, %‘ ~NFE, B
dneA. F F, A{x<n)}
n~m
F=0
IF.F=nlF1AFE, 4
IF,F".F=F \F"AF E,AnF"E, B
F = p(X)
3F’. FF iy A (4{X<F’} bogus)
FE g{&*”&% a match]

e However, this 1s not a well-formed definition of F |=p 4, because
the W case 1s circular. We need a proper semantics of fixpoints.

Example: Search

e Search:

* “Find one of my articles (ignore non-articles);
bind to X all info under the article label”:

S = 3X. article[(author[Cardelli] | T) A X] 1 T

e Can use recursive formulas to search deeper:

nE. Sv Ir. (€] 1 T)

* Not a query language yet.
e [t searches for one instance, not all instances.

e Some collecting primitive must be added. This 1s going to be
based on the logical notion of satisfaction.

 N.B.: X .4 is, logically, a bit strange:

* X denotes a singleton set of trees (the match), not a general set of
trees like a regular formula.

Example: Path Expressions

e Various kinds of path expressions can be defined:

pqlA S plgl=l path concatenation

p[A £ pE AvplE path iteration

pve)Al & plAl v ql#A) path disjunction

pXOIA & pIXAA] binding the tree at the end
N[l £ Ik xnAx@DIT some 1| leads to A
—MEA & @x.w-nAx[ADIT some non-1 leads to A
MIF & Vxxn=x=>%)IF alnleadtoX

etc.

e “X 1s an article that deals with SSD, or from each one can
reach, through citations, an article that deals with SSD’:

.article(X)(.cites.article)*.keyword[SSD]

Example: Schemas

* Alogic is a “very rich type system”. Hence we can
comfortably represent various kinds of schemas.

 However, extensions (or unpleasant encodings) are required for
ordered data: 2| B vs. 4 ; B.

e Ex.: Xduce-like schemas:

0
A8
Av B
n[A]
a*
g+
/R

the empty tree

an A nextto a B

either an Zor a B

an edge n leading to an %4

2 pEOvV (AIE) the merge of zero or more ¥s
29 \9A* the merge of one or more %s
L£0vH4 zero or one A

Semantics

[T1,5 = U F |=p,ésg £ [Fle [[%]]p,ﬁ
=4, 5 £ 97\ 4,5

[AABls & [HAlsnIBl,s

[IxAs & Unea [Alpans

M-~n'ls & ifpM) ~p(’) then FTelse {}
[01, 5 £ {0}

AL £ (Pl [1€ [HA,s)
[F1Bl,; & (1P| Ie[DsAl €lBl,s)
[X1, 5 £ {pX0}

[AXAls & UesrldHAlxens

[E], 5 2 3%

MEAL,; & NUSSIT | S20%, 551

[1 € @ x(NvaroA—A) U (Tvar—9)) x (Rvar—P(F0)) — P(F)

Av B

n#n’
Vx.A

VXA
vEA

n[=%l

AlB

[|| - [|- | [

> >

>

Derived Operators

T falsity

—(—A A —=B) disjunction

-N-~"N) label diversity

—dx—A universal name quantification
—dX. A universal tree quantification

—nE.—~A{E<——E} maximal fixpoint

—0 non-empty
—(n[—A]) edge implication

if edge is 1), it leads to 4
—(—HA | =B) decomposition

for every partition, either %4 holds one part, or B holds on the other
(% I F: all partitions satisfy $9)

Dualization

* We can dualize all operators.

-0 ~=1 =1 =0
—M[A] v n[=>—A] —M[=>%A] v> n[~A]
—(A41B) > =AI =B —(A W B) v =A| =B

WEA > PEAG—E} UCHA > Ve

e Plus the usual DeMorgan laws.

e This gives us an implementation strategy for —%.

 If we take the dual operators as primitive and implement them
directly, we can then “push negation to the leaves”.

Logical Equations

* We can commute/distribute/simplify many operators.

» This gives us opportunities for query optimization.

ule < N[T]I A=) n[=%] < [Tl =4l
nF] < F n=T] s T

NAAB] < nTIANDB] N=9v38 < M=%vn=93]
nEves < n#Evna] N=>9AB] < =%l An=>3]
4\ F < F F4I1T o T

TIT s T FIF o F

“ag10 e A g1 & A

g41B s BIA gNB = BIA
FIB)IC = ZI(BIO) FUB)IC = FANBIO)
FAIBv0) & (FIB)vE@IO GNBAC) < FIB)AEEIO)

* Dualization and other manipulations are based on logically valid
equations; these have been studied extensively for the original
Ambient Logic.

The Query Language
Q= Query

from Q E A select Q’ match and collect

X matching variable

0 empty result

nlo] nesting of result

o\Q’ composition of results

() tree functions (for extensibility)

e from Q F 4 select Q’

All the matches of Q with 7 are computed, producing bindings for the x and X variables
that are free in %4. The result expression Q’ is evaluated for each (distinct!) such
binding, and all the results are merged by | .

* N.B.: This general approach to building a query language Q for a
logic %4, is fairly independent from the details of the logic.

Query Examples

e Joins

Merge info about persons from two db’s:

from dbl E person[name[X*] | Y*] | T select M. binding occurrence
from db2 E person[name[X] | Z*] | T select
person[name[X] | Y | Z]

e Restructuring

Rearrange publications from by-article to by-year,
for each distinct year (1.e., for each distinct binding of X):

from db E .article[.year[X*]] select
publications-by-year]|

year[X] |
from db E .article[year[X] | Z*] select article[Z]]

Z binds all fields except year; this 1s rather unusual in QL’s

Query Examples

e Recursion

Find all email (or e-mail) addresses:

from db E P&, .email[X*] v .e-mail[X*] v Ix. .x[E]
select email[X]

e Unsafe queries

To be avoided by static or dynamic detection:

from db E (male[X*] v female[Y*']) | T select X*|1Y?

from db E —author[X*] select X?

Reference Query Semantics

Schemas (for rows and tables)

* V=V, ...V 1sacollection of distinct variables:
either label variables x or tree variables X.

Rows (or Valuations)

pVis a row with schema V: it maps each variable in V to a value
of the appropriate kind (label or tree).

A row can be seen as the result of a match, or as an environment
in which to evaluate further matches.

Tables (or Relations)

e A set of rows with a common schema V 1is called a table.
That 1s, V names the columns of the table.

Query Semantics [Q] v

e Produces a tree: the result of the query Q, where pVis used as an
environment for the free variables of O (included in V).

Reference Query Semantics

[XT,v £ X

[0],v £ 0

e,y £ pYmQI,v (P¥(n) £ n)
[el1o’ly & [QLv!IQly

oy £ ACLV)

[from Q F A select Q’,v &
Ut for p’V'2pV s.t. V'=VUFV(A) A [Ql,v € [4],V 5
of [Q’], v

- [from Q E A select Qv

Consider all the valuations p’ that extend the current valuation p with the (still-free)
variables of %7, and such that Q matches 7 under the appropriate valuations.

For all such (distinct) valuations, compute O’ and put all the results in parallel.

Just a “reference’ semantics

* The reference semantics is clean, but 1s hopelessly
inefficient.

» Literally, it requires computing beforehand a potentially infinite

set of p™¥' 2pY, which are then filtered by checking that [Q],v €
[9],-v" & The p*V" that survive (hopefully a finite set) are used to

build the result.

e It should be much better to compute this (hopefully) finite set of
useful p’V on the fly, by matching Q to “.

e This 1dea leads to a table algebra, used for building the
relevant valuations while matching Q to %4, and to a refined

evaluation procedure.

1v
RY UV RV
CoY(RY)

RV xV.V RV
IV, RY
oy R

> s> > > >

The Table Algebra

* A relational-style algebra for relations over labels & trees:

the largest table with schema V

RY URY

1V\RY

{psp’ | peRY, p’eR’Y'}
{p’elV [IpeRV. p2p’}
{peRV [, p'(M) ~p¥(M")}

N N N N N

e Derived operators

ExtVy.(RY)
RVAYRY
RY KoV R’V

> 1> >

RY »V.V\V 1V\V

CoY(Co"(RY) LY Cov(R'Y))

1V
1V
I\ \4
1v
1V

(VNV’=g)
(V’cV)
(FV(Mn')cV)

c 1V (vev)
clV

ExtVy (RY) AVYV ExtV'y (RV) < 199V

Query Evaluation

* We define a refined query semantics:

e A procedure Q(Q)pv that evaluate queries, uses a procedure
B(Z, ¥49),v to evaluate binders Q F %4 in the from-select case.

* B(, 972)pv produces a table, and 1s computed using the table
algebra operators.

e Natural join, X, takes the role of “unification” for match-variables
in binders.

* Some cases (simplified for non-recursive formulas):

Q(from Q F A select Q°),v &
let I = Q(Q),v and RFVYV =B(I, A)v in |J*)cr QQ)pVyp)

BU-A),y & CoPIVBU D)
BULAAB), & B(AV FVAVEVEOWN B(], B) v
B AXA),v & TIFVOVawnx BU AV

Correctness Theorem

 l.e., instead of computing the set [%4]], as in the reference
semantics, and checking at the end whether / is in [%7], we
process / and ¢ together in B, step by step.

e The table algebra 1s still specified rather abstractly. Any
particular implementation of the table algebra yields an
implementation of B, and hence of the query procedure Q.

e Correctness: the query evaluation procedure conforms to
the reference semantics, so it 1s correct:

V0. VV2FV(Q). Vp¥. Q(Q)v = [Q]v

By a simple induction, with a non-trivial lemma in the recursive formulas case.

What’s left out

e Effective implementations of the table algebra:

 In general, the tables manipulated by B can get infinite, e.g. for
unsafe queries, or for negation (may be ok if final result is finite).

» To supply a real implementation, one must provide a concrete
(sub-)algebra that provides a particular, efficient, representation
of tables, and of the operators over them. Some techniques:

* Eliminate unsafe queries by static or dynamic checks.

* Implement important derived operators directly (typically i,
which behaves finitely over finite tables).

» Push negation to the leaves (define B over dualized logical
operators, map them to the algebra).

e Represent certain infinite tables by finite means (e.g. by
constraints) and define the operators to work over those.

* These techniques are being investigated in an implementation
(TQL) that Giorgio Ghelli is carrying out in Pisa.

Conclusions

e There are many proposals for SSD query languages. Given the
power of recursive formulas, we think we can capture many of them
(certainly not all), and at least identify a natural spot in design space.

 We have investigated the notion of SSD query algebra, which has
been missing for too long. (Other proposals are now emerging.)

* We have provided a query language for SSD, a set of logical
optimization/rewrite rules, a reference semantics, a query algebra, a
specification of algebra-based implementations, and a correctness
theorem for the specification w.r.t. the reference semantics.

e L.Cardelli, G.Ghelli: A query language based on the ambient logic.
Proc. ESOP’01 (invited paper). <http://www.luca.demon.co.uk>

* G.Ghelli: Evaluation of TQL queries. To appear.
<http://www.di.unipi.it/~ghelli/papers.html>

