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Widely Distributed Systems

Concurrent systems that are spatially distributed
e Not in the same box.
* Not on the same LAN.
e Not inside the same firewall.
e Not always in the same place.

They have well-defined subsystems that:
e Fail independently.
e Recover independently.
e Hold secrets, mistrust each other.

e Move around.



The New Machine

The “machine” we now write programs for, is the whole Internet.
e New instruction sets (programming models):

* Message-centric, asynchronous, often stateless.
Cannot rely on distributed consensus.

 In striking contrast to shared-memory concurrency,
and handshake-based (synchronous) concurrency.

* New type systems:

e Traditional “strong” type systems have been (finally!)
enthusiastically adopted as a foundation for security.

e But entirely new type systems are needed for regulating
communication, and to manage application-level security.

 New program logics:
e Privacy/security concerns override everything else.

e Need “location awareness’.



Talking About Where

Informal statements:
e Distribution: Where are things happening?
e Security: Where are things kept, and who can get there?
e Privacy: Where are things known, and where are they leaked?

We need a new way of reasoning (i.e. a new logic):
e Classical logic: Whether something 1s true.
 Intuitionistic logic: How something 1s true.

e Temporal logic: When something 1s true.
e Spatial logic: Where something is true.



Outline

We look, concretely, at specific logics for specific models:
* For trees.
e For graphs.
* For mobility.
e For communication.
e For privacy.
With some common, new-ish, techniques:
e Semantically: Modal logics for structured worlds.
e Syntactically: Many-world sequent calculi.



1: A Logic for Trees

Historically, this all began with a spatial logics for the Ambient
Calculus (a process calculus based on trees of locations).

As a tutorial, we start by looking just at the trees.
Spatial interpretation: a formula holds at a particular (sub-)tree.

This has also 1ts own applications.

Cardelli: Describing Semistructured Data. SIGMOD Record.

Cardelli-Ghelli: A Query Language based on the Ambient Logic. ESOP’01.



Semistructured Data

(I.e.: XML after parsing) Abiteboul, Buneman, Suciu:
“Data on the Web”

Articles

A tree (or graph), unordered (or ordered). With labels on the edges.

Invented for “flexible” data representation, for quasi-regular data like
address books and bibliographies.

Adopted by the DB community as a solution to the “database merge”
problem: merging databases from uncoordinated (web) sources.

Adopted by W3C as “web data”, then by everybody else.



Trees and their Descriptions

Trees n
- PN
root edge join
Syntax for Trees (P,Q) Basic Descriptions (4,B)
0 root 0 there 1s only a root
n[P] edge n[4] there is an edge n to a subtree
Pl1Q join 418  there are two joined trees

T there is anything



Example

Data

Cambridge| In Cambridge there is
Ea I le| (nothing but) a pub called the
hairl01 | Eagle that contains (nothing
chair{0] but) two empty chairs.
chairl0]
|
] &
k=
Description ;5
Cambridg el % In Cambridge there is (at
Eag le| é least) a pub called the Eagle
hairl01 | I that contains (at least) one
chair{(] S empty chair.
T «
11T

]



Basic Tree Descriptions

0 matches 0
n[P] matches n[¥] iff P matches 4
Pl QO matches ¥4| B iff P matches %7 and Q matches 3

P matches T always

Property: if P matches 7 and P = Q, then Q matches 4
where P = Q means that P and Q represent the same tree:
P P, =P, | P,
P (P, Py) =P, | Py I P,
PO =P



Propositional Descriptions

v v v ©

matches

matches

matches

matches

—A

A NB
A B
A= B

iff P does not match 4
iff P matches % and P matches <3
iff P matches 4 or P matches B3

iff if P matches 4 then P matches B



Examples

“Vertical” implications about nesting
“Business Policy”

Borders| Borders|T] =
Starbucks]...] | Borders|Starbucks|T] | T}
Books|...]

] If it’s a Borders,

then it must contain a Starbucks

“Horizontal” implications about proximity

“Social Policy”
Smoker]|...] | (NonSmoker|T] I T) =
NonSmoker]|...] | (Smoker|T] 1 T)
Smoker]|...]

If there 1s a NonSmoker,
then there must be a Smoker nearby



Other Descriptions

P matches Vx.%4 iff P matches 4 for any label 1 for x

P matches WX iff P matches 4 where X is WX.4

(up to some well-formedness conditions)

Some definable descriptions:

Ax. G & —Vx—H
somewhere 4 £ pnX. Av 3y y[X]IT



Descriptions as Schemas

Descriptions are a “very rich type system”. We can comfortably
represent various kinds of schemas.

Ex.: Xduce-like schemas (c.f. XML DTDs):

0 the empty tree

AN B an A nextto a B

Av B either an 4 or a B

n[] an edge n leading to an 4

/M £ pX.0 v (41 X) the merge of zero or more %s
S+ £ A\ A the merge of one or more %4s

A A 0vY zero or one 4



Descriptions as Queries

Yes/no: Is there an empty chair at the Eagle?

Eagle|
chair
chair
chair

]

Eagle|
[John[0]] | matches? chair{0] (Yes)
Mary[0]] T

0] ]

With match variables ‘X: Who is sitting at the Eagle?

matches?

Eagle.[ Yes: X = John|[0]
Chalr[(X] I Yes: C_X: Ma}’y[()]

| 1 Yes: X=0  oops!



With match variables X: Who is really sitting at the Eagle?

Eag le.[ Yes: X = John[0]
matches? rcrhalr[—l() AR Yes: X = Mary[0]
|
With select-from:
from Eagle|...] Single result:
match Eagle[chair[—0 A X]1T] person[John[0]] |

select person[“X] person[Mary[0]]



2: A Logic for Graphs

Semistructured data 1s not actually trees, but either graphs, or graphs
with tree backbones.

It 1s interesting to generalize to a logic for graph.

But this 1s actually much harder. Questions of expressiveness and,
particularly, how to define query languages, are still open.

Likely, this 1s a subset of Second-Order Monadic logic,
but 1t allows direct “local” reasoning about subgraphs, without explicit
disjointness assumptions.

Cardelli-Gardner-Ghelli: A Spatial Logic for Querying Graphs. ICALP’02.



Graphs and their Descriptions

labeled graphs X
nI
y PQZ
empty edge join
(identify common nodes)

Syntax for Graphs (P,Q) Basic Descriptions (4,B)

0 empty 0 there is an empty graph

n(x,y) edge n(x,y) there 1s an edge from x to y labeled n
PlQ join “A1B there are two disjoint parts of a graph

T there is anything



Example: Paths

a

n O n n(a,b) | n(b,a)

b

There 1s a path of length 3 (Yes!):

Hw,x,y,z. (mw,x) | T) A(n(x,y) | T) A(n(y,2) | T)

There 1s a non-repeating path of length 3 (No!):

Jw,x,y,z. n(w,x) | n(x,y) | n(3,2) | T

As shown in the second case, we can encode implicitly and compactly disjointness
assumptions about subgraphs. This is due to the spatial nature of the logic: a formula
holds at a subgraph; 7 | ‘3 means that %7 and 3 hold at distinct subgraphs. (A

“subgraph” here is a subset of edges, not of nodes.)



3: A Logic for Mobility

We now look at our original spatial logic: a logic for mobility.

Security specifications are a concern here: additional logical operators
arise naturally, and turn out to be logical adjuncts.

Cardelli-Gordon: Anytime, Anywhere: Modal Logics for Mobile Ambients:
POPL’00.



Mobility

Mobility 1s change of spatial structures over time.
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Mobility

Mobility 1s change of spatial structures over time.
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Mobility

Mobility 1s change of spatial structures over time.
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Security

Security issues are reduced to the capability of entering and exiting
locations (as well as creating and destroying locations).

e E.g.: Firewall-crossing protocols.
» (Capabilities can be exercised only the the right places:
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Spatial-style Protocol Specification

Right now, we have a spatial configuration, and later, we have another
spatial configuration.

E.g.: Right now, the agent is outside the firewall, ...

agerV\firewall

X F 1

(agent|T] | firewall[T] | T)



Spatial-style Protocol Specification

Right now, we have a spatial configuration, and later, we have another
spatial configuration.

E.g.: Right now, the agent is outside the firewall, and later (after
running an authentication protocol), the agent 1s inside the firewall.

firewall

agent i
X

(agent[T] | firewall[T] | T) A O(firewall[agent|[T] | T] 1 T)



Spatial-style Protocol Specification

Right now, we have a spatial configuration, and later, we have another
spatial configuration.

E.g.: Right now, the agent is outside the firewall, and later (after
running an authentication protocol), the agent 1s inside the firewall.
And this works 1n presence of any (reasonable) attacker.

attacker firewall

Attack > ((agent[T] | firewall[T] | T) A O(firewalllagent[T] 1 T] 1 T))



Ambient Calculus (without Restriction)

Pell::
0
PP
P
MI[P]
M.P
(n).P
(M)

= Processes

void
composition
replication
ambient
capability
input

output

>

n[0]
M0

>

M ::=
n
in M

- spatial
out M

open M

>~ temporal MM’

(where appropriate)

Messages
name

entry capability
exit capability
open capability
empty path

composite path



Reduction Semantics

A structural congruence relation P = Q:
e On spatial expressions, P = Q 1iff P and Q denote the same tree.

e On full ambient expressions, P = Q if in addition the respective
threads are “trivially equivalent”.

e Prominent in the definition of the logic.

A reduction relation P —* Q:
e Defining the meaning of mobility and communication actions.
* Closed up to structural congruence:
P=P,P —"Q0,0=0 = P—"0
* Any details about reduction are “hidden” in the logic within a
temporal modality.



Logical Formulas

ABed:.= Formulas (1) is a name 7 or a variable x)
F false
ANB conjunction
=B implication (adjunct to A)
0 void
ANB composition
7/l guarantee (adjunct to | )
Nl location
Y@ placement (adjunct to 1[])
<A somewhere
OA sometime

VxS quantification over names



Satisfaction Relation

PEF
PEAANSB
PEA=B
PEO
PEA|B
PE S>3
P E n[%4]
PEY%@n
PE Y
PEOY
PEVYxA

S
N
<
O
~

LT | | - - - - |- | L |-

PEAAPESB

PEA=PE®DB

P=0

3P’ P’ell. P=P’ | P’ AP EAAP’ESB
VPell. PEA= PIP’EB

dP’ell. P=n[P’)AP’EHA

n[Pl|EA

AP’ell. P\'P’ AP’ EA

dP’ell. P—"P’ AP’ EHA

VmeA. P E A{xem)

PP’ iff 3nP”. P=n[P’]|P”
! * is the reflexive and transitive closure of |



Satisfaction for Basic Operators

e EO

g En[9  if A =39

AMI:CJHCB if AI:CJI and QI:CB

n
A ED@n if =59

AP@DCB if for all QPC}[ Wehaveﬁbh%




Satisfaction for Somewhere/Sometime

A oA if A FAa

(Ao it [N /N wa [\F9

N.B.: instead of ¢4 and <-%7 we can use a “temporal next step”
operator »%, along with the existing “spatial next step” operator n[%4],

together with pl-calculus style recursive formulas.

Basic Fact: satisfaction is invariant under structural congruence:

Ie.: {PeIl| P E 4} is closed under =.

Hence, formulas describe only congruence-invariant properties.



Applications

Verifying security+mobility protocols.
 Still hard, but we have good techniques. [Gordon-Cardelli *99]

Modelchecking security+mobility assertions:

e If Pis !-free and ¥4 is >-free, then P = 4 is decidable.
(PSPACE-complete [Cheratonik et al. ’01].)

e If Pis !-free and 4 is V-free, then P E 4 is decidable.
[Cardelli-Calcagno-Gordon ’02].)

e These provides ways of mechanically checking (certain)
assertions about (certain) mobile processes.

Expressing mobility/security policies of host sites.

* Conferring more flexibility than just sandboxing the agent.

Just-in-time verification of code containing mobility instructions

e By either modelchecking or proof-carrying code.



4: New Logics for Concurrency

In the process of making spatial sense of n[%?], we also had to make
spatial sense of 7 | ‘3. The latter is, in fact, the harder part. So, in
retrospect, 1t makes sense to consider it on 1ts own.

An outcome is spatial logics for CCS/CSP-like process calculi. Basic
idea: take a Hennessy-Milner modal logic and add an 2 | B operator.

([Dam] Very hard to reconcile with bisimulation.)

One can go further and investigate spatial logics for restriction, with a
hiding quantifier Hx.%4 (e.g. for w-calculus). This is essential for
security/privacy specifications.

([Caires] Very hard to reconcile with bisimulation.)

We can make all that work smoothly by taking a very intensional point

of view. The logical formulas are not up-to-bisimulation: they are up-
to-structural-congruence.



Spatial Properties: Identifiable Subsystems

A system is often composed of 1dentifiable subsystems.
e “A message 1s sent from Alice to Bob.”

e “The protocol 1s split between two participants.”

e “The virus attacks the server.”
Such partitions of a system are (obviously) spatial properties. They
correspond to a spatial arrangement of processes in different places.

e Process calculi are very good at expressing such arrangements
operationally (c.f., chemical semantics, structural congruence).

* To the point where a process 1s often used as a specification of
another process! (We consider this as an anomaly.)

 We want something equally good at the specification, or logical,
level.



Spatial Properties: Restricted Resources

A system often restricts the use of certain resources to certain
subsystems.

e “A shared private key n 1s established between two processes.”

e “A fresh nonce n 1s generated locally and transmitted.”

e “The applet runs in a secret sandbox.”
Something is hidden/secret/private if 1t 1s present only 1in a limited
subsystem. So these are spatial properties too.

 [If something is secret, by assumption it cannot be known. Still,
we want to talk about it in specifications.

* We can talk about a secret name only by using a fresh name for it
(we cannot assume the secret name matches any known name).

e So freshness will be an important concept. Logics of freshness are
VEry new.



Typical Spatial Formulas for Concurrency

Processes Formulas
0 (void) 0 (nothing here)
Pl QO (composition) A1B (two things here)
(vn)P  (restriction) n®%  (hidden thing here)
n{m) (message) n{m) (a message here)

n{m) E n{m)

= %} + Scope Extrusion...
Fn®A i A -



Things one can say

Single-threaded (or void):
—(—0 | —0)

Output: outputs a message m on n (and 1s/does nothing else):

n{m)

In presence of a message m on n, sends a message n on m and stops:

n{m) > »min)

Contains a name free:
©n é —|n®T

P FE —n®T iff =~ P = (vn)P’ iff nefn(P)



Satisfaction for Hidden and Public Names

(nok,
A FHxS2 if dméfm(P,A) Pﬁéeég} E A x—m)

A F ©n if nefn(P)

(Technically, Hx.%7 and ©n are both defined from n®%7 and a
Gabbay-Pitts freshness quantifier.)



Example: “Shared Secret” Postcondition

Consider a situation where “a hidden name x 1s shared by two locations
n and m, and 1s not known outside those locations™.

Hx.(n[©x] | m[©x])

What can we do with such a spec? We can fully expand the definitions
and work 1t out 1n the process calculus:

e PE Hx.(n[Ox] | m[©x])

& dreA. réfn(P)u{n.m} A AR’,R”ell. P = (vi)(n[R’] | m[R”])
ATEM(R’) A refn(R”)

* E.g.: take P = (vp) (n[p[1] | m[p[1D.

Or we can work logically at the formula level, within a proof system.



Ex: Immovable Object vs

. Irresistible Force

Im £ T o(obj()| T)
T > 0%—(obj{) | T)

>

Ir

Im|Ir - (T>OGbI{)IT)IT
- o(ebj{) | T)
- <o(ebj{) | T)
Im\Ir - TI(TD> OO—(ebj{) | T))
F 0l—(ebj() | T)
- —on(ebj{) | T)

Hence: Im|Ir+F

AT
(A>DB) | A+ DB
A+ OA

AT
O+ oA
0—AF 04

AAN—-AFF



S: A Common Formalization Style

Many-world sequents: ($)TF A

Validity: if all the constraints S, and all the assumptions I'; are satisfied,
then one of the conclusions A, is satisfied

Spatial) equivalence constraints
e )ed Indexes (denote processes) ’
(denote structural congruence)

(w’=v >V’ . )eu:A. . F..v:B..

Formulas (denote properties) ’

Caires-Cardelli: A Spatial Logic for Concurrency (Part I).

(Temporal) reduction constraints
(denote process reduction)

Alex Simpson did this for temporal logic.



Recipe for Rules

e Left rules, right rules. Operate mainly on the I - A part.
When operating on constraints (S):
Going up: One adds, the other checks constraints.
Going down: One removes, the other assumes constraints.
They form cut elimination pairs.

e World rules (optional). Operate on the (S) part only.

Embody inversion lemmas: deep properties of process calculi.
(In temporal logic, they embody properties such as reflexivity and transitivity of the
reachibility relation.)

Going up: add deducible constraints.
Going down: remove redundant constraints.
Commute easily with cuts.



Propositional Connectives

Identity, Cut, and Contraction:

(Id)
uzsu A=A
ST, u:49uw 4, A
(CL)
ST, u:4u:AFA
(ST, u:4FA

Propositional Connectives:

(AL)
ST, u:4 u:BFA
ST, u:AABEFA

(=L
STFu:AA ST u:BFA

(Cut)
S TFu:AA ST, u:AFA

($HT'FA

(CR)
STrFu:A u:4,A
(STFu:9A4, A

(AR)
(SHTFu:AA (SSTFu:B,A

ST u:A=BEA
(FL)

($HL,u:FFA

(STFu:AASB, A

=R)

ST u:49Fu:B, A

S THu:A=3, A

(FR)
(SYI'FA

(SHHT'Fu:FA



Spatial Connectives

Composition:
OL) OR)
(S, u=0)I'FA u=0
(HILLu:0FA (S)TFu:0,A
(1L) X, not free in the conclusion (IR)
(S, u= XN, X:A ¥:BFA (SYTFv:AA (SYTHt:B, A uzxvit
ST u:491BFA STFu:A13B, A
Guarantee: =
(> L) (> R) X not free in the conclusion gl (B - C
S THt: A A S tlu:BFA ST X:AFv:B,A v Xlu
)T, u: 4> BFA (S)TFu:A> B, A ArC>B
Additional World Structure:
(S10) S11) X,7,U,V not free in the conclusion
(S, u=0)I'A ulv=0 (S, u=X17, v=UVIY, t=XI1UVU,w=YI1V)[FA ulvztlw
(S)I'HA (S)T'FA
Suppose xly=0 = x=0. Then, if Suppose ulv=tls = I x,y,z,w s.t. u=xly, v=zlw, t=xlz, s=ylw. Then, if we can
we can already deduce that x|y = already deduce that ulv=;tlw, we can eliminate a redundant assumptions

0, we can eliminate a redundant
assumption x=0.



AN B)AOFAAB

6.2 (S, u=X1%u=0, X0, X:A4 V:Bru:4 A
52(S, u=X1%uz=0T, X:A V:Bru:4 A
42 u=XINC, X4 YV: B u:0Fu:4 A
329 u:(AI1B),u:0Fu:4,A

22T u: (A1 B)AOFu:A A

;:I(S)F,u:(%ICB)AOI-u:CB,A
1O u:(A@IB)AOFuU:AANB, A

(Id) since u=Xx

6.2, (S 10) since X19=0
52,0L)

42, (I1L)

32,(AL)

Similarly

2.1,22,(AR)



Conclusions

We set out to find logics for describing properties of distributed systems.
(After trying equational reasoning, traces, etc.)

Spatial logics exhibit the trade-offs of temporal logics: compact notation for implicit
state, nice proof systems, reduced expressiveness.

Along the way, we discovered many other applications for the basic techniques. We
believe there is something intriguing and new in the approach and its formalization.

With respect to traditional logics of concurrency, we are very intensional.
But another word for it is precise.

With Caires, we now have a logic and sequent calculus (with cut-elimination)
for m-calculus, where we can express privacy properties.

Related work:
e With Calcagno and Godon: Model checking and validity checking.
e Sangiorgi: Spacetime bisimulation.
e (O’Hearn and Pym: Logics for heaps.



