
������������∞
	
����������

������������������

������� �������������������

2003-04-23 2

��� ���

• Rotor (and the CLR), re-enable
language experimentation.
– A pre-approved multi-language environment.
– With a flexible attitude towards further

innovation.
– Open to the wider community.

• What should we do with this freedom?
– Add Generics/Polymorphism (Done!)

• Generic CLR/C#, Gyro
– Integrate Functional Languages (Done!)

• SML.NET, F#, ILX
– What else?

2003-04-23 3

!�" ����#������#������

• We are in the middle of a transition in
programming models (and possibly PLs)
– More radical than C to C++ (objects)

or C++ to Java (strong typing).
• What’s on the other side of the transition?

– Not clear, but lots of small and big steps are
being taken into uncharted territory.

• We have a Cambrian explosion of
programming models.
– Lots of badly misshaped things are going to

evolve before architectures settle down.

2003-04-23 4

$�%������������
��� &'

• A new emphasis on computation on WANs
– Wide area data integration

• XML is “net data”.
• Need to integrate this new data into PLs.
• BIG DEBATE: hide, blend-in, or redesign?

– Wide area flow integration
• Messages nor RPC, schedules not threads.
• Need to integrate these new flows into PLs.
• BIG DEBATE: hide, blend-in, or redesign?

• Impact
– Not easy to fit this new stuff into existing PLs.
– Ideal for Rotor research…

2003-04-23 5

(����)���#������

• PL data has traditionally been "triangular" (trees),
while persistent data has traditionally been
"square" (tables).
– This has caused huge integration problems.

• Now, BIG NEWS, persistent data is triangular too!
(XML)
– New opportunity for PL integration.
– However, the type systems for PL data (based on tree

matching) and XML (based on tree automata) are still
deeply incompatible.

– Wouldn't it be nice to "program directly against the
schemas" in a well-typed way?

2003-04-23 6

���" �)���#������

• Wouldn’t it be nice to hide concurrency
from programmers?
– SQL does it well.
– UI packages do it fine.
– RPC does it ok.
– But we are moving towards more asynchrony,

I.e. towards more visible concurrency
(BizTalks, etc.)

– You can hide all concurrency some of the time,
and you can hide some concurrency all the
time, but you can’t hide all concurrency all the
time.

2003-04-23 7

�����������#

• It would be wrong to see these new net data and
net flow features as "just" new Domain Specific
Languages (DSLs).

• This are fundamental new concepts that may
result in new kinds of "general purpose
programming languages" for WANs.
– Analogy with past transitions: C++ was not just a DSL

for objects, and Java was not just a DSL for type safety.
– We need more than just an XML DSL and a flow DSL.

• Keep an open mind: there may be great
opportunities around the corner, either as
evolutions of C#, or new languages.

2003-04-23 8

����� ����&

• Whether or not we merge new
programming models into PLs, we need
analysis tools for these new situations.
– Data: e.g.: data consistency checks.
– Flow: e.g.: behavioral type system.

• The new programming models are
sophisticated (i.e. “evil”), and require
equally sophisticated (i.e. “good”) analysis
tools to protect developers.

• BIG Debate/Trade-off: Checked
annotations, vs. inferred information.

2003-04-23 9

� ����������)���

• Semistructured Data
• XDuce
• TQL
• Spatial Data Types
• <Unnamable> (Erik Meijer and Wolfram Shulte)

• Concurrent Flows
• BizTalk
• BPEL
• Polyphonic C#
• Sharpie
• <Unnamable> (Greg Meredith)

2003-04-23 10

���������
�����

• New opportunities for Rotor research…
• Both data and flow extensions are famously

incompatible with standard languages:
– Schemas vs. (object) types

“impedence mismatch”
– Concurrency vs. inheritance

“inheritance anomaly”

2003-04-23 11

��*)�� '�+������
��
���(���

•• A tree (or graph), unordered (or ordered). With labels on the A tree (or graph), unordered (or ordered). With labels on the
edges.edges.

•• Invented for Invented for ““flexibleflexible”” data representation, for quasidata representation, for quasi--regular regular
data like address books and bibliographies.data like address books and bibliographies.

•• Adopted by the DB community as a solution to the Adopted by the DB community as a solution to the ““database database
mergemerge”” problem: merging databases from uncoordinated (web) problem: merging databases from uncoordinated (web)
sources.sources.

•• Adopted by W3C as Adopted by W3C as ““web dataweb data””, then by everybody else., then by everybody else.

ArticlesArticles
PaperPaper PaperPaper

AuthorAuthor TitleTitle AuthorAuthor AuthorAuthor TitleTitleYearYear

CC AA BB 33 GG DD KK

(I.e.: XML after parsing)(I.e.: XML after parsing) AbiteboulAbiteboul, , BunemanBuneman, , SuciuSuciu: :
““Data on the WebData on the Web””

2003-04-23 12

)�,��-�
�
���(���

• Not really arrays/lists:
– Many children with the same label, instead of indexed

children.
– Mixture of repeated and non repeated labels under a

node.
• Not really records:

– Many children with the same label.
– Missing/additional fields with no tagging information.

• Not really variants (tagged unions):
– Labeled but untagged unions.

• Unusual data.
– Yet, it aims to be the new universal standard for

interoperability of programming languages, databases,
e-commerce...

2003-04-23 13

!����-�
�
���	��#
�#��

• New flexible types and schemas are required.
– Based on “regular expressions over trees”

reviving techniques from tree-automata theory.

• New processing languages required.
– Xduce [Pierce, Hosoya], Cduce, our own…
– Various web scripting abominations.

• New query languages required. Various
approaches:
– From simple: Existence of paths through the tree.
– To fuzzy: Is a tree “kind of similar” to another one?
– To fancy: Is a tree produced by a tree grammar?
– To popular: SQL for trees/graphs, for some value of

“SQL”.

2003-04-23 14

(����(�����.�����

• We want to talk about (specify/ query/ constrain/
type) the possible structure of data, for many
possible reasons:
– Typing (and typechecking): for language and database

use.
– Constraining (and checking): for policy or integrity use.
– Querying (and searching): for semistructured database

use.
– Specifying (and verifying): for architecture or design

documents.
• A description is a formal way of talking about the

possible structure of data.
– We should go after a general framework: a very

expressive language of descriptions.
– Special classes of descriptions can be used as types,

schemas, constraints, queries, and specifications.

2003-04-23 15

�/��.��'�%&.��#

CambridgeCambridge[[
EagleEagle[[

chairchair[[00] |] |
TT

] |] | TT
]]

DescriptionDescription

In Cambridge there is (at In Cambridge there is (at
least) a pub called the Eagle least) a pub called the Eagle
that contains (at least) one that contains (at least) one

empty chair.empty chair.

CambridgeCambridge[[
EagleEagle[[

chairchair[[00] |] |
chairchair[[00]]

]]
]]

In Cambridge there is In Cambridge there is
(nothing but) a pub called the (nothing but) a pub called the
Eagle that contains (nothing Eagle that contains (nothing

but) two empty chairs.but) two empty chairs.

DataData

da
ta

 m
at

ch
es

 d
es

cr
ip

tio
n

da
ta

 m
at

ch
es

 d
es

cr
ip

tio
n

2003-04-23 16

�/��.��'�0
�����

EagleEagle[[
chairchair[[¬¬00 ∧∧ ��] |] |
TT

]]

matches?matches?
Yes: Yes: �� = = JohnJohn[[00]]
Yes: Yes: �� = = MaryMary[[00]]

With match variables With match variables ��: : Who is really sitting at the Eagle?Who is really sitting at the Eagle?

from from EagleEagle[...][...]
match Eaglematch Eagle[[chairchair[[¬¬00 ∧∧ ��] |] | TT]]
select select personperson[[��]]

Single result: Single result:
personperson[[JohnJohn[[00]] |]] |
personperson[[MaryMary[[00]]]]

With With selectselect--fromfrom::

2003-04-23 17

�
������� ��1

• We investigate
– Powerful languages of data description, based

on “spatial logics”.
– Akin to “description logics” of some time ago,

but seen more as type systems.
– Special cases are regular expressions over

trees (XML query, etc.)
– Lots of open problems in this area (typing and

subtyping algorithms).

2003-04-23 18

��*)�� '�����
���������"�

• Distribution => concurrency + latency
=> asynchrony
=> more concurrency

• Message-passing, event-based
programming, dataflow models

• For programming languages, coordination
(orchestration) languages & frameworks,
workflow

2003-04-23 19

	��#
�#���
..������������
�����&

• Why?
– Make invariants and intentions more apparent

(part of the interface)
– Good software engineering
– Allows the compiler much more freedom to

choose different implementations
– Also helps other tools

2003-04-23 20

2!�%����&

• Java-style “monitors”
• OS shared memory primitives
• Clunky delegate-based asynchronous calling model
• Hard to understand, use and get right

– Different models at different scales
– Support for asynchrony all on the caller side – little

help building code to handle messages (must be
thread-safe, reactive, and deadlock-free)

2003-04-23 21

���&.��������

• An extension of the C# language with new
concurrency constructs

• Based on the join calculus
– A foundational process calculus like the ππππ-calculus but

better suited to asynchronous, distributed systems
– It adapts remarkably well to classes and methods.

• A single model which works both for
– local concurrency (multiple threads on a single

machine)
– distributed concurrency (asynchronous messaging

over LAN or WAN)
• It is different
• But it’s also simple – if Mort can do any kind of

concurrency, he can do this

2003-04-23 22

)����������'

• Objects have both synchronous and asynchronous
methods.

• Values are passed by ordinary method calls:
– If the method is synchronous, the caller blocks until the

method returns some result (as usual).
– If the method is async, the call completes at once and

returns void.
• A class defines a collection of chords (synchronization

patterns), which define what happens once a particular set
of methods have been invoked. One method may appear
in several chords.
– When pending method calls match a pattern, its body runs.
– If there is no match, the invocations are queued up.
– If there are several matches, an unspecified pattern is

selected.
– If a pattern containing only async methods fires, the body

runs in a new thread.

2003-04-23 23

$����.���
����

class Buffer {
String get() & async put(String s) {

return s;
}

}

2003-04-23 24

$����.���
����

class Buffer {
String get() & async put(String s) {

return s;
}

}

•An ordinary (synchronous) method with no
arguments, returning a string

2003-04-23 25

$����.���
����

class Buffer {
String get() & async put(String s) {

return s;
}

}

•An ordinary (synchronous) method with no
arguments, returning a string

•An asynchronous method (hence returning no
result), with a string argument

2003-04-23 26

$����.���
����

class Buffer {

String get() & async put(String s) {
return s;

}

}

•An ordinary (synchronous) method with no
arguments, returning a string

•An asynchronous method (hence returning no
result), with a string argument

•Joined together in a chord

2003-04-23 27

$����.���
����

class Buffer {

String get() & async put(String s) {
return s;

}
}

•Calls to put() return immediately (but are internally queued if there’s
no waiting get()).

•Calls to get() block until/unless there’s a matching put()

•When there’s a match the body runs, returning the argument of the
put() to the caller of get().

•Exactly which pairs of calls are matched up is unspecified.

2003-04-23 28

$����.���
����

class Buffer {
String get() & async put(String s) {

return s;
}

}
•Does example this involve spawning any threads?

•No. Though the calls will usually come from different pre-
existing threads.

•So is it thread-safe? You don’t seem to have locked anything…

•Yes. The chord compiles into code which uses locks. (And that
doesn’t mean everything is synchronized on the object.)

•Which method gets the returned result?

•The synchronous one. And there can be at most one of those in
a chord.

2003-04-23 29

�����3� �����

…using threads and mutexes in Modula 3
An introduction to programming with threads.
Andrew D. Birrell, January 1989.

2003-04-23 30

�����3� �����������4�������

public class ReaderWriter {
public void Exclusive() & async Idle() {}
public void ReleaseExclusive() { Idle(); }

public void Shared() & async Idle() { S(1); }
public void Shared() & async S(int n) { S(n+1); }
public void ReleaseShared() & async S(int n) {
if (n == 1) Idle(); else S(n-1);

}

public ReaderWriter() { Idle(); }
}

A single private message represents the state:
none �� Idle() �� S(1) �� S(2) �� S(3) …
(exclusive) (available) (shared)

A pretty transparent description of a simple state machine,
as it should be.

2003-04-23 31

����
���

• A clean, simple, new model for asynchronous
concurrency in C#
– Declarative, local synchronization
– Model good for both local and distributed settings
– Efficiently compiled to queues and automata
– Easier to express and enforce concurrency

invariants
– Compatible with existing constructs, though they

constrain our design somewhat
– Minimalist design – pieces to build whatever

complex synchronization behaviours you need
– Solid foundations
– Works well in practice

2003-04-23 32

)�.�����������

• Translate Polyphonic C# -> C#
• Built on Proebsting & Hanson’s lcsc
• Introduce queues for pending calls (holding blocked

threads for sync methods, arguments for asyncs)
• Generated code (using brief lock to protect queue state)

looks for matches and then either
– Enqueues args (async no match)
– Enqueues thread and blocks (sync no match)
– Dequeues other args and continues (sync match)
– Wakes up blocked thread (async match with sync)
– Spawns new thread (async match all async)

• Efficient – bitmasks to look for matches, no PulseAlls,…

2003-04-23 33

�����
�����

• New languages
– Language evolution is driven by elegance

(mental efficiency).
– Language adoption is driven by need.

• We now badly need evolution in data
handling and control flows.
– Lots of inelegant need-driven hacks.
– Some elegant designs here and there.
– Let’s put them together!
– To C∞∞∞∞ … and beyond!

