
�����������	��	

������ � ���	

�����

����	��������

 ��������	��������

2003-11-13 2

�����������	�����������

• Programming languages (PLs)
– They evolve slowly and occasionally
– But new programming models are invented routinely

• As domain-specific libraries or API’s
• As program analysis tools
• As language extensions

• Transitions
– Significant transitions in programming models

eventually “precipitate” into new programming
languages (unpredictably)

– We can watch out for significant transitions in
programming models

2003-11-13 3

��� 	
������ � ���	
�����

• We are in the middle of a transition in
programming models (and eventually PLs)
– More radical than C to C++

• Brought more robust data structures (objects)

– More radical than C++ to Java
• Brought more robust control flows (strong typing)

• We now have a Cambrian explosion of
programming models.
– Lots of badly misshaped things are going to evolve

before architectures settle down.
– What’s on the other side of the transition?

2003-11-13 4

�����������	��	�	���������	�����

• A new emphasis on computation on WANs
– Wide area data integration

• XML is “net data”. XML API’s.
• Need to integrate this new data into PL data structures.

– Wide area flow integration
• Messages nor RPC, schedules not threads. Messaging API’s.
• Need to integrate these new flows into PL control constructs.

– Wide area security integration
• Access control, data protection. Security and privacy API’s.
• Need to integrate security properties into PL assertions.

• Impact
– Disruptive transitions: not easy to convert these API’s

into extensions of existing PLs.
– Ideal topics for research.

2003-11-13 5

����	�����������

• Wouldn't it be nice to "program directly against
the schema" in a well-typed way?
– PL data has traditionally been "triangular" (trees), while

persistent data has traditionally been "square" (tables)
– This has caused huge integration problems, known as

the “impedence mismatch” in data base programming
languages

– Now, BIG NEWS, persistent data (XML) is triangular
too!

– New opportunity for PL integration
– However, the type systems for PL data (based on tree

matching) and XML (based on tree automata) are still
deeply incompatible

2003-11-13 6

 ��� 	�����������

• Wouldn’t it be nice to hide concurrency from
programmers?
– SQL does it well
– UI packages do it fine
– RPC does it ok
– But we are moving towards more asynchrony, I.e.

towards more visible concurrency (e-commerce scripts
and languages, etc.)

– You can hide all concurrency some of the time, and you
can hide some concurrency all the time, but you can’t
hide all concurrency all the time

– Asynchronous message-based concurrency does not
fit easily with more traditional shared-memory
synchronous concurrency control

2003-11-13 7

�������!	�����������

• Wouldn’t it be nice to have automatic security?
– It’s an applet. Sits is a sandbox. End of story.
– Ok, what about semi-automatic security? Explicitly

grant/require permissions. (Stack walking etc.)
– Leads to emerging “sophisticated” access models that

programmers do not understand reliably.

2003-11-13 8

"�� 	��	���������	�����������

• New programming models often require new
kinds of analysis.
– Domain Specific Languages: PLs equipped with

specialized analysis for specific programming models
– E.g. SQL (both data and concurrency optimization),

security policy languages

• But some transitions go beyond DSL’s
– C++ was not just a DSL for objects, and Java was not

just a DSL for type safety
– Some transitions really require new “general-purpose”

languages
– We need more than an XML DSL, a messaging DSL, a

security DSL

2003-11-13 9

�����#����!

• Whether or not we merge new programming
models into PLs, we need analysis tools for these
new situations
– Data: e.g.: semistructured type/analysis systems

• “Does the program output match the schema?”
– Flow: e.g.: behavioral type/analysis system

• “Does the program respect the protocol?”
– Security: e.g.: information-flow type/analysis system

• “Does the program defy policy or leak secrets”

• Analysis tools are critical for software reliability

2003-11-13 10

$ ���	���	��	��	�#���	����%

• Assumptions
– The existing situation is extremely messy

• How many web services have you deployed lately?

– Those 3 WAN-related transitions in programming
models have a high probability of precipitating into new
languages for WAN programming

• Research plan
– In view of that, try to make some progress in one or

more of those areas

2003-11-13 11

&�������	��������'�������	&�(�����	&���(�����
�
 ��������'��������

• Semistructured Data
• TQL, Spatial Data Types …
• MS:Xen (Erik Meijer, Wolfram Shulte, Herman Venter, …)

– Extends C# with XML-like data types and XML query expressions,
integrated with real SQL queries.

• Concurrent Flows
• BPEL, Polyphonic C#, Sharpie, Behavioral Types …
• MS:Highwire (Greg Meredith, …)

– Distributed scheduling language based on ππππ-calculus and linear
logic types.

• Security/Privacy/Protocols
• Samoa, Vault …
• MS:Binder (John DeTreville)

– A Logic-Based security language

2003-11-13 12

&	
�������	&�����

• Data
– Description logics (Spatial Logic)
– Promising technology: Tree automata

• Flows
– Polyphonic C#
– Promising technology: Synchronization joins

• Hiding (a very small step towards security/privacy)

– Trees with hidden labels
– Promising technology: Name-dependent types

2003-11-13 13

�&�&

•• A tree (or graph), unordered (or ordered). With labels on the A tree (or graph), unordered (or ordered). With labels on the
edges.edges.

•• Invented for Invented for ““flexibleflexible”” data representation, for quasidata representation, for quasi--regular regular
data like address books and bibliographies.data like address books and bibliographies.

•• Adopted by the DB community as a solution to the Adopted by the DB community as a solution to the ““database database
mergemerge”” problem: merging databases from uncoordinated (web) problem: merging databases from uncoordinated (web)
sources.sources.

•• Adopted by W3C as Adopted by W3C as ““web dataweb data””, then by everybody else., then by everybody else.

ArticlesArticles
PaperPaper PaperPaper

AuthorAuthor TitleTitle AuthorAuthor AuthorAuthor TitleTitleYearYear

CC AA BB 33 GG DD KK

Semistructured DataSemistructured Data
(I.e.: XML after parsing)(I.e.: XML after parsing)

AbiteboulAbiteboul, , BunemanBuneman, , SuciuSuciu: :
““Data on the WebData on the Web””

2003-11-13 14

��)�	*������	����

• Not really arrays/lists:
– Many children with the same label, instead of indexed

children.
– Mixture of repeated and non repeated labels under a

node.
• Not really records:

– Many children with the same label.
– Missing/additional fields with no tagging information.

• Not really variants (tagged unions):
– Labeled but untagged unions.

• Unusual data.
– Yet, it aims to be the new universal standard for

interoperability of programming languages, databases,
e-commerce...

2003-11-13 15

�����	*������	���������

• New flexible types and schemas are required.
– Based on “regular expressions over trees”

reviving techniques from tree-automata theory.

• New processing languages required.
– Xduce [Pierce, Hosoya], Cduce, …
– Various web scripting abominations.

• New query languages required. Various
approaches:
– From simple: Existence of paths through the tree.
– To fuzzy: Is a tree “kind of similar” to another one?
– To fancy: Is a tree produced by a tree grammar?
– To popular: SQL for trees/graphs, for some value of

“SQL”.

2003-11-13 16

����	������+�����

• We want to talk about data
– I.e., specify/query/constrain/typecheck the possible

structure of data, for many possible reasons:
• Typing (and typechecking): for language and database use.
• Constraining (and checking): for policy or integrity use.
• Querying (and searching): for semistructured database use.
• Specifying (and verifying): for architecture or design

documents.

• A description is a formal way of talking about the
possible structure of data.
– We go after a general framework: a very expressive

language of descriptions.
– Combining logical and structural connectives.
– Special classes of descriptions can be used as types,

schemas, constraints, queries, and specifications.

2003-11-13 17

,-�� +��.	�!+���

CambridgeCambridge[[
EagleEagle[[

chairchair[[00] |] |
TT

] |] | TT
]]

DescriptionDescription

In Cambridge there is (at In Cambridge there is (at
least) a pub called the Eagle least) a pub called the Eagle
that contains (at least) one that contains (at least) one

empty chair.empty chair.

CambridgeCambridge[[
EagleEagle[[

chairchair[[00] |] |
chairchair[[00]]

]]
]]

In Cambridge there is In Cambridge there is
(nothing but) a pub called the (nothing but) a pub called the
Eagle that contains (nothing Eagle that contains (nothing

but) two empty chairs.but) two empty chairs.

DataData

da
ta

 m
at

ch
es

 d
es

cr
ip

tio
n

da
ta

 m
at

ch
es

 d
es

cr
ip

tio
n

2003-11-13 18

,-�� +��.	/������

EagleEagle[[
chairchair[[¬¬00 ∧∧ ��] |] |
TT

]]

Yes: Yes: �� = = JohnJohn[[00]]
Yes: Yes: �� = = MaryMary[[00]]

With match variables With match variables ��: : Who is really sitting at the Eagle?Who is really sitting at the Eagle?

from from EagleEagle[...][...]
match Eaglematch Eagle[[chairchair[[¬¬00 ∧∧ ��] |] | TT]]
select select personperson[[��]]

Single result: Single result:
personperson[[JohnJohn[[00]] |]] |
personperson[[MaryMary[[00]]]]

With With selectselect--fromfrom::

2003-11-13 19

,-�� +��.	
�������

BordersBorders[[
StarbucksStarbucks[[……] |] |
BooksBooks[[……]]

]]

BordersBorders[[TT]] ��
BordersBorders[[StarbucksStarbucks[[TT] |] | TT]]

If itIf it’’s a Borders, s a Borders,
then it must contain a Starbucksthen it must contain a Starbucks

““VerticalVertical”” implications about nestingimplications about nesting
““Business PolicyBusiness Policy””

SmokerSmoker[[……]] ||
NonSmokerNonSmoker[[……]] ||
SmokerSmoker[[……]]

((NonSmokerNonSmoker[[TT] |] | TT)) ��
((SmokerSmoker[[TT] |] | TT))

If there is a If there is a NonSmokerNonSmoker,,
then there must be a Smoker nearbythen there must be a Smoker nearby

““HorizontalHorizontal”” implications about proximityimplications about proximity ““Social PolicySocial Policy””

2003-11-13 20

,-�� +��.	����� ��

• Descriptions are a “very rich type system”. We
can comfortably represent various kinds of
schemas.

• Ex.: Xduce-like (DTD-like) schemas:

0 the empty tree
���� | ���� an ��������next to a ����
���� ∨∨∨∨ ���� either an ��������or a ����
n[����] an edge n leading to an ����
�������� ���� µµµµX.0 ∨∨∨∨ (���� | X) the merge of zero or more ����s
��������+ ���� ���� | �������� the merge of one or more ����s
��������? ���� 0 ∨∨∨∨ ���� zero or one ����

2003-11-13 21

�������	$ ��0

• Longer-term research:
– Powerful languages of data description, based

on spatial logics. Akin to description logics of
some time ago, but seen as type systems.

– Special cases are regular expressions over
trees (XML query, etc.)

– Lots of open problems in this area (typing and
subtyping algorithms)

2003-11-13 22

�����������	
����

��	���	

T ::= N
| T[] | T{}
| T(…,T,…)
| T|T
| T*
| […, T m,…]

�����

����	
�

������
������

���������	��

	��	��
 ��������

2003-11-13 23

 �1$ �

• Distribution => concurrency + latency
=> asynchrony
=> more concurrency

• Approaches: Message-passing, event-based
programming, dataflow models

• Languages: coordination (orchestration)
languages, workflow languages

2003-11-13 24

��������	��++���	���	����������!

• Make invariants and intentions more apparent
(part of the interface)

• Good software engineering
• Allows the compiler much more freedom to

choose different implementations
• Also helps other tools

2003-11-13 25

2�,�	����!

• Java-style “monitors”
• OS shared memory primitives
• Delegate-based asynchronous calling model
• Hard to understand, use and get right

– Different models at different scales
– Support for asynchrony all on the caller side – little

help building code to handle messages (must be
thread-safe, reactive, and deadlock-free)

2003-11-13 26

��!+�����	�3

• An extension of the C# language with new
concurrency constructs

• Based on the join calculus
– A foundational process calculus like the ππππ-calculus but

better suited to asynchronous, distributed systems
– First applied to functional languages (JoCaml).
– It adapts remarkably well to o-o classes and methods.

• A single model which works both for
– local concurrency (multiple threads on a single

machine)
– distributed concurrency (asynchronous messaging

over LAN or WAN)
• It is different. But it’s also a simple extension of

familiar o-o notions.

2003-11-13 27

��	���	�����.

• Objects have both synchronous and asynchronous methods.
• Values are passed by ordinary method calls:

– If the method is synchronous, the caller blocks until the method
returns some result (as usual).

– If the method is async, the call completes at once and returns
void.

• A class defines a collection of chords (synchronization
patterns), which define what happens once a particular set of
methods have been invoked. One method may appear in
several chords.
– When pending method calls match a pattern, its body runs.
– If there is no match, the invocations are queued up.
– If there are several matches, an unspecified pattern is selected.
– If a pattern containing only async methods fires, the body runs in

a new thread.

2003-11-13 28

&	��� +��	#�����

class Buffer {
String get() & async put(String s) {

return s;
}

}

2003-11-13 29

&	��� +��	#�����

class Buffer {
String get() & async put(String s) {

return s;
}

}

•An ordinary (synchronous) method with no
arguments, returning a string

2003-11-13 30

&	��� +��	#�����

class Buffer {
String get() & async put(String s) {

return s;
}

}

•An ordinary (synchronous) method with no
arguments, returning a string

•An asynchronous method (hence returning no
result), with a string argument

2003-11-13 31

&	��� +��	#�����

•An ordinary (synchronous) method with no
arguments, returning a string

•An asynchronous method (hence returning no
result), with a string argument

•Joined together in a chord

class Buffer {
String get() & async put(String s) {

return s;
}

}

2003-11-13 32

&	��� +��	#�����

•Calls to put() return immediately (but are internally queued if there’s
no waiting get()).

•Calls to get() block until/unless there’s a matching put()

•When there’s a match the body runs, returning the argument of the
put() to the caller of get().

•Exactly which pairs of calls are matched up is unspecified.

class Buffer {
String get() & async put(String s) {

return s;
}

}

2003-11-13 33

&	��� +��	#�����

•Does example this involve spawning any threads?

•No. Though the calls will usually come from different pre-
existing threads.

•So is it thread-safe? You don’t seem to have locked anything…

•Yes. The chord compiles into code which uses locks. (And that
doesn’t mean everything is synchronized on the object.)

•Which method gets the returned result?

•The synchronous one. And there can be at most one of those in
a chord.

class Buffer {
String get() & async put(String s) {

return s;
}

}

2003-11-13 34

������4$ �����

…using threads and mutexes in Modula 3
An introduction to programming with threads.
Andrew D. Birrell, January 1989.

An integer i represents the lock state:
-1 �� 0 �� 1 �� 2 �� 3 …

(exclusive) (available) (shared)

2003-11-13 35

������4$ �����	��	��(�	������

public class ReaderWriter {
public void AcquireExclusive() & async Idle() {}
public void ReleaseExclusive() { Idle(); }

public void AcquireShared() & async Idle() { S(1); }
public void AcquireShared() & async S(int n) { S(n+1); }
public void ReleaseShared() & async S(int n) {
if (n == 1) Idle(); else S(n-1);

}

public ReaderWriter() { Idle(); }
}

A single private message represents the state:
none �� Idle() �� S(1) �� S(2) �� S(3) …

(exclusive) (available) (shared)

A pretty transparent description of a simple state machine, as it should
be.

2003-11-13 36

 �������

• A clean, simple, new model for asynchronous
concurrency in C#
– Declarative, local synchronization
– Model good for both local and distributed settings
– Efficiently compiled to queues and automata
– Easier to express and enforce concurrency invariants
– Compatible with existing constructs, though they

constrain our design somewhat
– Minimalist design – pieces to build whatever complex

synchronization behaviours you need
– Solid foundations
– Works well in practice
– Convenient - much better than programming state

machines yourself

2003-11-13 37

�� +��� ��������

• Translate Polyphonic C# to C#
• Introduce queues for pending calls (holding blocked

threads for sync methods, arguments for asyncs)
• Efficient – bitmasks to look for matches

2003-11-13 38

"����5

• Any kind of security/privacy issue has to do
with hiding something
– Hiding information by encryption
– Hiding information by access control
– Hiding private data so it does not escape

• Baby step:
– How can we support hidden data in a

programming language?
– N.B.: Hiding pure names (passwords/ids)

not, e.g., hiding numbers

2003-11-13 39

����	
����.	�����	� ���	"�����	��#���

P,Q ::=
0
n[P]
P | Q
(ννννn)P

P QP

n

P

n

(root)

2003-11-13 40

����	,6��(������	�����������	�����������

• (ννννn)(P | (ννννn)Q) ���� ((ννννn)P) | ((ννννn)Q)

• (ννννn)m[P] ���� m[(ννννn)P] if n≠≠≠≠m

n

P Q

n n

P Q

n

=

P

m
n

= P

m
n

2003-11-13 41

,-.	�����	
�������

• E.g., XML IDREFs

Encoded as
(unique) addr[y[0]]

Encoded as
ptr[y[0]]

ptr
y

addr

y

y

anonymous pointer id

y

2003-11-13 42

,-.	*��6��	���	*�������#�� ���

id
y

checkbook

y

y

anonymous account
number

id
y

checkbook
y

y

another account

an account

another (guaranteed
different) account number

2003-11-13 43

�!+�	�!���� �	���	"�����	��� ��

• account : Hy. … id[y] … checkbook[y] …

• These are name-dependent types
– Dependent types: traditionally very hard to

handle because of computational effects.
– But dependent only on “pure names”: no

computational effects.
– Name-dependent types are emerging as a

general techniques for handling freshness,
hiding, protocols (e.g. Vault), and perhaps
security/privacy aspects in type systems.

2003-11-13 44

�����������

• New languages
– Language evolution is driven by wishes.
– Language adoption is driven by needs.

• We now badly need evolution in areas
related to WAN-programming.
– Lots of inelegant need-driven hacks.
– Some interesting designs here and there.
– Let’s put them together into languages that are

useful for wide-area programming!

2003-11-13 45

����������

• Data
– Meijer et al.: Xen
– Cardelli, Ghelli et al.: TQL

• Flows
– Fournet et al.: Join Calculus
– Benton, Cardelli, Fournet: Polyphonic C#
– Larus et al: Behave!

• Hiding/Freshness
– Pitts et al: Fresh-ML
– Cardelli, Gardner, Ghelli: Manipulating Trees with

Hidden Labels.
– DeLine et at: Vault

(See personal web pages or search engines.)

