Transitions in
Programming Models

Luca Cardelli

Microsoft Research
Cambridge UK

DISC Amsterdam, 2004-10-06

Significant Transitions

* Programming languages (PLs)
- They evolve slowly and occasionadlly, e.qg.:

» C to C++: More robust data structures (objects)
» C++ to Java : More robust control flows (strong typing)

- But new programming models are invented routinely
» As domain-specific libraries or APT's

- As program analysis tools
* As language extensions

» Transitions
- Significant transitions in programming models eventually
“precipitate” into new programming languages
(unpredictably)

- We can watch out for significant transitions in
programming models

Transitions in 3 (related) areas

- We are in the middle of a radical transition in
programming models (and eventually PLs)

* A new emphasis on computation on WANs

- Wide area flows
* Messages nor RPC, schedules not threads. Messaging APILS.
- Need to integrate these new flows into PL control constructs.

- Wide area data
- XML is "net data". XML APIs.
- Need to integrate this new data into PL data structures.

- Wide area protection
- Access control, data protection. Security and privacy APILs.
- Need to integrate security properties into PL assertions.

» Disruptive transitions
- Forget RPC (and threads): the world is asynchronous.
- Forget type systems as we know them.
- Forget trusting anything non-local.

Flow Integration

Wouldn't it be nice to hide concurrency from
programmers?

- SQL does it well
- UT packages do it fine (mostly single-threaded!)
- RPC does it ok

- But we are moving towards more asynchrony, I.e.
towards more visible concurrency (e-commerce scripts
and languages, web services, etc.)

You can hide all concurrency some of the time, and you can hide
some concurrency all the time, but you can't hide all concurrency
all the time.

- Asynchronous message-based concurrency does not fit
easily with more traditional shared-memory synchronous
concurrency control

Goal: make concurrent flows available and
checkable at the language level.

Data Integration

* Wouldn't it be nice to "program directly against
the schema" in a well-typed way?

- PL data has traditionally been "triangular” (trees), while
persistent data has traditionally been "square" (tables)

- This has caused integration problems: the "impedance
mismatch” in data base programming languages

- Now, persistent data (XML) is triangular too!

- However, the type systems for PL data (based on tree
matching) and XML (based on tree automata) are still
deeply incompatible

* Goal: make semistructured data easily available

and checkable at the language level.

Protection Integration

+ Wouldn't it be nice to have automatic security?
- It's an applet. Sits is a sandbox. End of story. (?)

- Ok, what about sem/-automatic security? Explicitly
grant/require permissions. (Stack walking etc.)

- Leads to "sophisticated” access models that
programmers do not understand reliably.

» Security today: obscure mechanisms to prevent
something from happening.

- It is usually not clear what security mechanisms are
meant to achieve.

- Need to move towards dec/arative security and privacy
intferfaces and policies.

* Goal: make protection policies available and

checkable at the language level.

Language Reliability

* Whether or not we merge new programming
models into PLs, we need analysis tools for these
hew situations

- Flow: e.g.: behavioral type/analysis system
* "Does the program respect the protocol?”

- Data: e.g.: semistructured type/analysis systems
* "Does the program output match the schema?"”

- Protection: e.g.: information-flow type/analysis system
* "Does the program defy policy or leak secrets”
» Analysis tools are critical for software reliability
- Getting it right without assistance is just too hard.
- These technologies need to be developed in any case.

A Personal Agenda

- Flows [exploit join calculus]
- Synchronization chords
- Qw (fka Polyphonic C#)
 Data [exploit spatial logics as types]
- Description logics
- Qw (fka Xen/x#)
* Protection [exploit n-calculus-style restriction]

- Flows: Secrecy and Group Creation
- Data: Trees with hidden labels

2004-10-06 9

Language Support for (WAN) Distribution

» Distribution = concurrency + latency
= asynchrony
— more concurrency

- Approaches: Message-passing, event-based programming,
dataflow models, etc.

- Languages: coordination (orchestration) languages,
workflow languages, etc.

* Good language support for asynchrony

- Make invariants and intentions more apparent (part of
the interface), because:
- It's good software engineering

- Allows the compiler much more freedom to choose different
implementations

- Also helps other tools

_alyphonicer QG
An extension of the C# language with new
concurrency constructs

Based on the join calculus

- A foundational process calculus like the n-calculus but
better suited to asynchronous, distributed systems.

- First applied to functional languages (JoCaml).
- It adapts remarkably well o 0-o0 classes and methods.

A single model that works for

- Local concurrency (multiple threads on a single machine).

- Distributed concurrency (asynchronous messaging over
LAN or WAN).

- With no distributed consensus.

It an unusual model. But it's also a simple extension
of familiar o0-o notions.

- No threads, no locks, no fork, only jorn.

In one slide:

Client Side (method invocation)

- Objects have both synchronous and asynchronous methods.

- If the method is synchronous, the caller blocks until the method
returns some result (as usual).

- If the method is async, the call completes at once and returns void
(as in message passing).

Server Side (class definition)

- A class defines a collection of chords (method synchronization
patterns), which define what happens once a particular set of
methods have been invoked. One method may appear in several
chords.

- When enough pending method calls match a chord pattern, the
chord body runs. If there are several matches, an unspecified
chord is selected.

- Each chord can have at most one synchronous method (providing the
result). A chord containing only asynchronous methods effectively
forks a new thread.

A simple unbounded buffer

class Buffer {
String get () & async put (String s) {
return s;

A simple unbounded buffer

class Buffer {
String get () & async put (String s) {
return s;

*An ordinary (synchronous) method header with no
arguments, returning a string

A simple unbounded buffer

class Buffer {
String get () & async put (String s) {
return s;

*An ordinary (synchronous) method header with no
arguments, returning a string

*An asynchronous method header (hence returning
no result), with a string argument

A simple unbounded buffer

class Buffer {
String get () & async put (String s) {
return s;

*An ordinary (synchronous) method header with no
arguments, returning a string

*An asynchronous method header (hence returning
no result), with a string argument

«Joined together in a chord with a single body

A simple unbounded buffer

class Buffer {
String get () & async put (String s) {
return s;

Calls to put () return immediately (but are internally queued if there’s
no waiting get ()).

«Calls to get () block until/unless there’s a matching put ()

*When there’s a match the body runs, returning the argument of the
put () to the caller of get ().

*Exactly which pairs of calls are matched up is unspecified.

A simple unbounded buffer

class Buffer {
String get () & async put (String s) {
return s;

*Does this example involve spawning any threads?

*No. Though the calls will usually come from different pre-
existing threads.

*So is it thread-safe? You don’t seem to have locked anything...

*Yes. The chord compiles into code which uses locks. (And that
doesn’t mean everything is synchronized on the object.)

*Which method gets the returned result?

*The synchronous one. And there can be at most one of those in
a chord.

Reader/Writer

...using threads and mutexes in Modula 3

VAR i: INTEGER: An mtroductlgn to programming with threads.
VAR c: Thread.Condition;

PROCEDURE AcquireExclusive(); PROCEDURE ReleaseExclusive();
BEGIN BEGIN
LOCK m DO LOCK m DO
WHILE i # 0 DO Thread. Wait(m,c) END; i :=0; Thread.Broadcast(c);
i:=-1; END;
END; END ReleaseExclusive;

END AcquireExclusive;
PROCEDURE ReleaseShared();

PROCEDURE AcquireShared(); BEGIN
BEGIN LOCK m DO
LOCK m DO i:=1-1;
WHILE i < 0 DO Thread. Wait(m,c) END:; IF i = 0 THEN Thread.Signal(c) END;
i:=i+l; END;
END; END ReleaseShared;
END AcquireShared;

An integer i represents the lock state:
1 &2 0 &2 1 &5 2 &> 3..
(exclusive) (available) (shared)

Reader/Wpriter in five chords

public class ReaderWriter ({
public void AcquireExclusive () & async Idle() {}
public void ReleaseExclusive() { Idle(); 1}

public void AcquireShared() & async Idle() { S(1); }
public void AcquireShared() & async S(int n) { S(n+l),; }
public void ReleaseShared() & async S(int n) {

if (n == 1) Idle(); else S(n-1);
}

public ReaderWriter () { Idle(); }

A single private message represents the state:
none €= Idle() €2 S(l) €2 S(2) €2 S(3) ..

(exclusive) (available) (shared)

A pretty transparent description of a simple state machine.
Moreover, the synchronization patters are apparent in the class interface,

Features

* A clean, simple, new model for asynchronous
concurrency

- Minimalist design - to build whatever complex
synchronization behaviors you need

- Easier to express and enforce concurrency invariants;
not "buried in the code” any more

- Much better than programming reactive state machines
by hand (the complier does it for you).

- Efficiently compiled to queues, automata, match bit-
vectors, and thread pools.

- Compatible with existing constructs, though they
constrain our design somewhat

- Solid foundations, on which to build analysis tools.

Ongoing Work

- Protocol contracts

- Typechecking-style support for checking the
interaction of concurrent protocols.

- A.k.a behavioral type system, session types, etc.
* Required for software reliability

* Facilitated by explicit concurrency
interfaces.

2004-10-06 23

DATA

Abiteboul, Buneman, Suciu:
Semistructured Data “Data on the Web"

(I.e.: XML after parsing) Articles

* A tree (or graph), unordered (or ordered). With labels on
the edges.

+ Invented for "flexible" data representation, for quasi-
regular data like address books and bibliographies.

* Adopted by the DB community as a solution to the
“database merge" problem: merging databases from
uncoordinated (web) sources.

+ Adopted by W3C as "web data“, then by everybody else.

It's Unusual Data

* Not really arrays/lists:

- Many children with the same label, instead of indexed
children.

- Mixture of repeated and non repeated labels under a
node.

* Not really records:
- Many children with the same label.
- Missing/additional fields with no tagging information.

* Not really variants (tagged unions):
- Labeled but untagged unions.

- Unusual data.

- Yet, it aims to be the new universal standard for
interoperability of programming languages, databases, e-
commerce...

Needs Unusual Languages

* New flexible types and schemas are
required.

- Based on "reqular expressions over trees”
reviving techniques from tree-automata theory.

* New processing languages required.

- Xduce [Pierce, Hosoya], Cduce, ...

- Various web scripting abominations.

* New access methods/query languages
required.

- E.g. Existence of paths through the tree.

Data Descriptions

+ We want to falk about data
- L.e., specify/query/constrain/typecheck the possible
structure of data, for many possible reasons:
- Typing (and typechecking): for language and database use.
- Constraining (and checking): for policy or integrity use.
- Querying (and searching): for semistructured database use.

- Specifying (and verifying): for architecture or design
documents.

* A description (spatial formula) is a formal way of
talking about the possible structure of data.

- We go after a general framework: a very expressive
language of descriptions.

- Combining logical and structural connectives.

- Special classes of descriptions can be used as types,
schemas, constraints, queries, and specifications.

Example: Typing

Data

ambridge n Cambridge there is
Cambridge| In Cambridge th
Ea g le| (nothing but) a pub called the
hairl01 | Eagle that contains (nothing
¢ al.}” 0] but) two empty chairs.
chair|0]
|
] &
&
Description é
Cambridg el % In Cambridge there 1s (at
Eag le| é least) a pub called the Eagle
hairl01 | I that contains (at least) one
chair{0] = empty chair.
T «
11T

]

Example: Queries

With match variables X: Who is really sitting at the Eagle?

Eag le.[Yes: X = John[0]
rcrhalr[—l() A AT Yes: X = Mary[0]
]
With select-from:
from Eagle|...] Single result:
match Eagle[chair[—0 A X]1T] person[John[0]] |

select person[“X] person[Mary[0]]

Example: Policies

“Vertical” implications about nesting
“Business Policy”

Borders| Borders|T] =
Starbucks]...] | Borders|Starbucks|T] | T}
Books|...]

] If it’s a Borders,

then it must contain a Starbucks

“Horizontal” implications about proximity

“Social Policy”
Smoker]|...] | (NonSmoker|T] I T) =
NonSmoker]|...] | (Smoker|T] 1 T)
Smoker]|...]

If there 1s a NonSmoker,
then there must be a Smoker nearby

Example: Schemas

+ Descriptions are a "very rich type system”. We can
comfortably represent various kinds of schemas.

+ Ex.: Xduce-like (DTD-like) schemas:

0 the empty tree

T e an 9 nexttoa B

DB - githerdn 2 ora B

n[%4] an edge nleading to an 4

S/ 2 uX0v (&@| X the merge of zero or more ¥4s
A+ 2 G| A" the merge of one or more s
K7 20va ' Zero or one 4

Ongoing Work

* Freely mixing logic and data: spatial logics
a[b[AVvB]] = a[C]

- Can be seen as type systems, query languages,
policy specifications, efc.

- Special cases are regular expressions over trees
(XML query, etc.)

- Lots of open theoretical problems in this area
(typing and subtyping algorithms, decidable
sublogics, etc.)

WCw

arrays closures
T ::= N

T[] | T{}
T(...,T,% union |

|
|
| TIT
|
|

T *

fo—

2004-10-06 34

Hiding

» Any kind of security/privacy issue has to do
with hiding something
- Hiding procedures by access control
- Hiding data by encryption
* In programming languages:
- How can we protect/hide flows? (Security)
- How can we protect/hide data? (Privacy)

- Exploit the mother of all hiding operators:
n-calculus restriction (already widely used in
crypto protocol analysis).

Flow Protection: Group Creation

* Group creationis a hew general construct
that can be added to virtually any language

or formalism.

- It is a natural extension of the sort-based
type systems developed for the m-calculus:

- (v6) (vn6) (vm:6) ...

- create a new group (i.e., unstructured type or
collection) &, and populate it with new elements

n,m, ..
+ A secret like 7 can never escape from the
initial scope of &, as a simple matter of
typechecking.

Untrusted Opponents

* Problem: opponents cheat. Suppose the opponent is
untyped, or not well-typed (e.g.: running on an
untrusted machine):

vp) (.0 | (v6) (vx6) (px | PY)

untrusted untrusted trusted locally typechecked
name server opponent player

» Will an untyped opponent, by cheating on the type
of the public channel p, be able to acquire secret
information?

* Fortunately, no. The fact that the player is well-

typed is sufficient to ensure secrecy, even in

Br'esence of untyped opponents. Essentially
ecause p(x) must be locally well-typed.

» We do not even need to trust the type of the
public channel p, obtained from a potentially
untrusted name server.

Secrecy Guarantee

* Programmer’s reference manual:
Names of group & remain secret, forever,
outside the initial scope of (v65).
+ Secrecy Theorem (paraphrased)

If (v6)(vx...6..)Pis well-typed, then Pwill not leak x
even to an untyped (untrusted) opponent.

Data Protection: Trees with Hidden Labels

P,Q ::

e .

root

e SV NDZI-NViaN
Pl Q el

(vn)P

Tree Equivalence (Structural Congruence)

* (va)(P (vn)Q) = ((vm)P) | (vn)Q)

Ex: Local Pointers

* E.g., XML IDREFs

[Encoded as anonymous pointer id
(

unique) adary0]]

Encoded as
ptriy0]]

Ex: Unique and Unguessable IDs

an account
anonymous account
number

v

another account

e cl?hook
5 ¥

another (guaranteed
different) account number) e T

Type Systems for Hidden Names

« account H%&/a[y] ... checkbooAly] ...

Hiding quantifier |

+ These are name-dependent types

- Dependent types: traditionally very hard to
handle because of computational effects.

- But dependent only on "pure names": no
computational effects.

- Name-dependent types are emerging as a
general techniques for handling freshness,
hiding, protocols (e.g. Vault), and perhaps
security/privacy aspects in type systems.

2004-10-06 44

WAN Flows, Data, Protection

* New languages
- Language evolution is driven by wishes.
- Language adoption is driven by needs.

* We now badly need evolution in areas
related o WAN-programming for non-
experts (i.e. with language support).

- Concurrent flows.

» Applications of Join Calculus.
- Semistructured data.

- Applications of Spatial Logics.

- Flow and data protection.
» Applications of n-calculus restriction.

References

- Flows

- Join Calculus: Fournet et al.

- Polyphonic C#: Benton, Cardelli, Fournet.

- Behavel: Larus et a/. Vault: Deline et at

- + Kobayashi, Honda, Yoshida, Vasconcelos, ...

* Data

- Xen/ Cw: N\eijer' et a/., http://www.research.microsoft.com/Comega/

- TQL: Cardelli, Ghelli et al.

* Protection

- Fresh-ML: Pitts et al/.
- Secrecy and Groups: Cardelli, Ghelli, Gordon.
- Trees with Hidden Labels: Cardelli, Gardner, Ghelli.

(See personal web pages or search engines.)

