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50 Years of Molecular Cell Biology
() Genes are mad eo f DN A SOLVING THE NEUTRINO MYSTERY « RECOGNIZING ANCIENT LIFE

- Store digital information as sequences of 4
different nucleotides

- Direct protein assembly through RNA and the
Genetic Code

50 YEARS OF THE

DOUBL

e Proteins (>10000) are made of amino acids
- Process signals

Activate genes

Move materials

Catalyze reactions to produce substances

Control energy production and consumption

e Bootstrapping still a mystery

- DNA, RNA, proteines, membranes are today
interdependent. Not clear who came first

- Separation of tasks happened a long time ago
- Not understood, not essential



Towards Systems Biology

Biologists now understand many of the cellular components
- A whole team of biologists will typically study a single protein for years
- When each component and each reaction is understood, the system is understood (?)

But this has not led to understand how "the system” works
- Behavior comes from complex chains of interactions between components
- Predictive biology and pharmacology still rare
- Synthetic biology still unreliable

New approach: try to understand "the system”
- Experimentally: massive data gathering and data mining (e.g. Genome projects)
- Conceptually: modeling and analyzing networks (i.e. interactions) of components

What kind of a system?
- Just beyond the basic chemistry of energy and materials processing...
- Built right out of digital information (DNA)
- Based on information processing for both survival and evolution

Can we fix it when it breaks?
- Readlly becomes: How is information structured and processed?



Storing Processes

e Today we represent, store, search, and analyze:
- Gene sequence data
- Protein structure data
- Metabolic network data

Signalling pathway data

e How can we represent, store, and analyze biological processes?

- Scalable, precise, dynamic, highly structured, maintainable representations
for systems biology.

- Not just huge lists of chemical reactions or differential equations.

e In computing..

- There are well-established scalable representations of dynamic reactive
processes.

- They look more or less like little, mathematically based, programming
languages.



Structural Architecture
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Abstract Machines of Systems Biology

The “hardware” (biochemistry) is Regulation ornTTInr Tt :
fairly well understood.
But what is the "software” that
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Reactive Systems

e Modeling biological systems
- Not as continuous systems (often highly nonlinear)

- But as discrete reactive systems; abstract machines with:
e States represent situations
e Event-driven transitions between states represent dynamics

- The adequacy of describing (discrete) complex systems as reactive systems
has been argued convincingly [Harel]

e Many biological systems exhibit feaures of reactive systems:
- Deep layering of abstractions

Complex composition of simple components

Discrete transitions between states

Digital coding and processing of information

Reactive information-driven behavior

High degree of concurrency and nondeterminism

"Emergent behavior” not obvious from part list



Chemistry vs. n-calculus

A process calculus (chemistry, or SBML)

Na + Cl —,, Na* + Cl
Na*+ Cl- —_, Na + Cl

1 line per
reaction

The same "model”

A compositional graphical representation,
and the corresponding calculus.

Na Cl
o o
ki ki
?s lr % 2pr

k2 k2
Na* Cl-
1 line per
component .
. Na

Maps to : Maps fo
aCTMC -

Na = !r'k1: ?SkZ; Na

a CTMC

This Petri-Net-like graphical representation
degenerates into spaghetti diagrams: precise
and dynamic, but not scalable, structured, or
maintainable.

CI = ?r'kl,' !SkZ; CI

A4

Cl-

A different process calculus (r)

J




Methods

e Model Construction (writing things down precisely)
- Formalizing the notations used in systems biology.
- Formulating description languages.
- Studying their kinetics (semantics).

e Model Validation (using models for postdiction and prediction)
- Simulation from compositional descriptions
e Stochastic: quantitative concurrent semantics.
e Hybrid: discrete transitions between continuously evolving states.
- "Program” Analysis
e Control flow analysis
e Causality analysis
- Modelchecking
e Standard, Quantitative, Probabilistic



Basic Modeling Guidelines

e Regev-Shapiro: "Molecules as Computation”:

Molecule Process
Interaction capability Channel
Interaction Communication
Modification State change
(of chemical components) (state-transition systems)

Cellular Abstractions: Cells as Computation
Regev&Shapiro NATURE vol 419, 2002-09-26, 343

e They chose n-calculus and adapted it with stochastic features
- To match the stochastic aspects of (bio)chemistry

- Many probabilistic process calculi predate them, but only Hillston (CSP) and
Priami () had already studied stochastic calculi.



n-calculus Executive Summary

It's for:
- The modular description of concurrent, nondeterministic systems
- Study of such systems based on their descriptions

It's got:
- Processes
- Channels
- A minimalistic syntax (it's a /anguage and also a model)

You can:
- Fork new processes
Create new channels

Do I/0 over channels (synchronous and asynchronous)
including passing channels over channels

Make nondeterministic choices
Define processes recursively

That's it.
- Except for extensive model theory and metatheory.

- Cannot pass processes over channels
(simulated by passing channels to them)

- Cannot define procedures
(simulated by supplying reply channels)



nt-calculus

Syntax
m u= x(y) receive y alongx
F(y) send y along x
Pu=0|3Y,em-Pi|[t=9y] P| PP | (newz)P |IP
Structural congruence 5Yn'|'GX

Renaming of bound variables

2@)P = o(x).({z/y}P)  ifz¢ FN(P)
(newy).P = (newz).({z/y}P) ifz¢g FN(P)
Structural congruence laws
PlQ = Q|P commutativity of parallel composition
(PIQ))R = P|(Q|R) associativity of parallel composition .
P+Q = Q+P commutativity of summation Chemlcal
P+Q)+R = P+ (Q+R) associativity of summation o ¢
(newz)0 = 0 restriction of inert processes Mlx 'ng
(new z)(new y)P = (new y)(new z)P polyadic restriction
((new z)P)|Q}) = (new z)(P|Q) ifr¢g FN(QQ) scope extrusion
LB = <BllP replication

Reaction rules

(- +TF.Q(- - +2(y).P) = Q|P{z/y} communication (COMM)

P|5 :: B 0 reaction under parallel composition (PAR)

Reactions

P P

(new 2) P — (new )P reaction under restriction (RES)

Q=PP— P P =
Q- ¢

structural congruence (STRUCT)




Stochastic n-calculus Executive Summary

e A simple variant of n-calculus:

Channels have stochastic "firing"
rates with exponential distribution.

Nondeterministic choice becomes
stochastic race.

Cuts down to CTMCs (Continuous
Time Markov Chains) in the finite
case (not always). Then, standard
analytical tools are applicable.

Can be given friendly automata-like
scalable graphical syntax (work in
progress: Andrew Phillips).

Is directly executable (e.g. via the
Gillespie algorithm from physical
chemistry).

Is analyzable (large body of

literature, at least in the non-
stochastic case).
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Figure 2. Regulating Gene Expression by Positive Feedback [9)
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Figure 3. Protein A molecules v.s. time in presence (left) and absence (right) of TF
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Importance of Stochastic Effects

e A deterministic system:
- May get "stuck in a fixpoint”.
- And hence never oscillate.

e A similar stochastic system:

= MCly be “thrown off the fixpoin’r" by Surprisingly enough, we -

stochastic noise, en’rer'ing a Iong orbit have fpund that parameter Valugs that give rise to a stable stgady
state in the deterministic limit continue to produce reliable

that will later br'ing it back to the fixpoin‘r. oscillations in the stochastic case, as shown in Fig. 5. Therefore,
And h illat the presence of noise not only changes the behavior of the system
n ence oscillare. by adding more disorder but can also lead to marked qualitative
differences.
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99 no. 9 p5991 Fig.5. Timeevolution of A for the deterministic Eq. [1] i2) and stochastic (B) Ff:rl:;;:I]u;:;aﬁl::cl;ﬁ?;:;h;;?n that would initiste 3 single sweep of the

versions of the model. The values ofthe parameters are as inthe caption ofFig.
1, except that now we set & = 0.05 h~'. For these parameter values, + < 0, so
that the fixed point is stable.



Gene Networks



The Gene Machine

The "Central Dogma" of Molecular Biology
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The Gene Machine “Instruction Set”

cf. Hybrid Petri Nets [Matsuno, Doi, Nagasaki, Miyano]

Positive Regulation
Negative Regulation L-\ /—‘ Transcription In ut

Input

I

Gene
(Stretch of DNA)

Regulation of a gene (positive and
negative) influences
transcription. The regulatory
region has precise DNA
sequences, but not meant for
coding proteins: meant for
binding requlators.

Transcription produces molecules
(RNA or, through RNA, proteins)
that bind to regulatory region of
other genes (or that are end-
products).

Output Output2 J_ 1 Outputl

Codiiglieglor "External Choice"

The phage

Reqgulat ion
eguidrory reglo lambda switch

Human (and mammalian) Genome Size
3Gbp (Giga base pairs) 750MB @ 4bp/Byte (CD)
Non-repetitive: 16bp 250MB
In genes: 320Mbp 80MB
Coding: 160Mbp 40MB
Protein-coding genes: 30,000-40,000

M.Genitalium (smallest true organism)
580,073bp 145KB (eBook)

E.Coli (bacteria): 4Mbp 1MB (floppy)

Yeast (eukarya): 12Mbp 3MB (MP3 song)

Wheat 17Gbp 4.256B (DVD)




Gene Composition

_I:’_l_bl:’ Is a shorthand for:
a

Under the assumptions [Kim & Tidor]

1) The solution is well-stirred
(no spatial dependence on concentrations or rates).

2) There is no regulation cross-talk.

3) Control of expression is at transcription level only
(no RNA-RNA or RNA-protein effects)

4) Transcriptions and translation rates monotonically
affect mRNA and protein concentrations resp.

Ex: Bistable Switch I_._-I

Ex: Oscillator r

@

degradation T

@
o1, ]
protein @ @
translation t T

mRNA

A
transcription ET
gene
b

Expressed

C
1 Expressing




Gene Regulatory Networks

http://strc.herts.ac.uk/bio/maria/NetBuilder/

NetBuilder
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(The Classical ODE Approach)

[Chen, He, Church]

Qegmda’ricD

n: number of genes

dr _ F(p)- Vr r mRNA concentrations (n-dim vector)
dt p protein concentrations (n-dim vector)
dp _
gr S Lr-ur f (p) transcription functions:

(n-dim vector polynomials on p)



Nullary Gate

spontaneous
_ ("constitutive")
roinput —— b output

null
interaction site of
output protein

null(b) & =.; (tr(b) | null(b))

(recursive, parametric)
P and repeat
process definition P

output protein

stochastic delay (t) with (transcripion factor),
rate € of constitutive spawn out

transcription

A stochastic rate r is always associated with each channel a. (at channel
creation time) and delay 7., but is often omitted when unambiguous.



Production and Degradation

Degradation is extremely important and often deliberate;
it changes unbounded growth into (roughly) stable signals.

/ and repeat
transcripton
factor ’\ tr(p) £ (Ip,.. tr( —

degradation
p)) + 15
\{ degradation rate 6
interaction site of stochastic choice
transcription factor (race between r and 9)

(output, ) interaction with rate r
(input, ?, is on the target gene)

A transcription factor is a process (not a message or a channel):
it has behavior such as interaction on p and degradation.

combined effect of
production and
degradation (without
any interaction on b) null(b) £=0.1, 3-0.001

product b ..
interaction 1%

offers onb

1

b —
—2° i) 2 (n) [ null()) S

null




Unary Pos Gate
it | gy e |

pos
transcripton delay
A with rate 1
(input, ?) interaction with rate r pos(a.,b)._
s T ?a'“' by (tr(b) | pos(a,b)) ¥ race between
or constitutive transcription T, (tr(b) | pos(a,b)) \‘ - and ¢
to always get things started
output protein
parallel, not sequence, i e
to handle self-loops r=1.0, £=0.01, n=0.1, 5=0.001 amount of
without deadlock b =« :
L | SR Stimulated---
D Pl s Y <+— *tr(a.) | pos(a,,b)
e Constifutive: po S (Cl,b)



Unary Neg Gate
input output (constitutive
(inhibitory) ’\ a > b/‘ when not inhibited)

neg
A inhibition delay
(input, ?) interaction with rate r |\Y\eg(a,b)=//‘ with rate 1
?a.; t,.. neg(a,b) +
or constitutive transcription | T, (tr(b) | neg(a,b)) race between
to always get things started | rand ¢
r=1.0, €e=0.1, n=0.01, 6=0.001
b T —
e SR neg(ar,b)

e e ir(a) | neg(a.)




pos(a,b) |
pos(b,c)

Signal Amplification

a b C
E2 s 2 g

pos pos

With little degradation

r=10, £=0.01,1=0.1, 3=0.00001

pos(a,b) £

?a,; t,. (tr(b) | pos(a,b)) +
T, (tr(b) | pos(a,b))

tr(p) = (Ip.. tr(p)) + T;

r=10, €=0.01, 1=0.1, 3=0.001

pos(ab) | posb.c)

10000 12000

E.g. 1 a that
interacts twice
before decay can
produces 2 b that
each interact twice
before decay, which
produce 4 c...

even with no a inpuft,
consitutive production
of b gets amplified to
a high c signal



Signal Normalization

neg(a,b) | a b c ne)géq,lz).éne
2a.; T,; neg(a,b) +
heg(b,c) N e N g T, (*nb(b)lneg(a,b))

neg neg

tr(p) £ (Ip.. Tr(p)) + 5

r=1.0,¢=0.1,1=0.01, 6=0.001

a non-zero input level, g,
whether weak or strong,
is renormalized fo a
standard level, c.

30*tr(a) | neg(a,b) | neg(b,C)



Self Feedback Circuits

os(a,a neg\a,a
posled) g 00 1
pOS neg
pos(a,b) £ neg(a,b) 2
?a.; (tr(b) | pos(a,b)) + ?a.; T,; heg(a,b) +
t.. (tr(b) | pos(a,b)) t.. (tr(b) | neg(a,b))
tr(p) 2 (Ip,.. tr(p)) + T; tr(p) 2 (Ip,. tr(p)) + 5
(Can overwhelm degradation, high, to raise
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Two-gate Feedback Circuits

b
| 1

pos neg

pos(b,a) |
neg(a,b)

Monostable:

For some degradation rates is quite stable:

r=1.0, e=0.1, h=0.01, 6=0.0005

700 700
600 600
500 \ 500
400 \ 400
300 300
\\.._ A, m._ a a
oty PV Vil
200 SR o 200 "'“‘W"M"
. " J/,N
; b b

10000 20000 30000 40000 50000

pos(b,a) | neg(a,b)

T T T T 0
0 10000 20000 30000 40000 50000 0

But with a small change in degradation, it goes wild:

r=10,e=0.1, h=0.01, 5=0.0001
6000
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‘/,/’,’ a
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neg neg
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Bistable:

r=1.0, e=0.1, h=0.01, 5=0.001
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Repressilator

neg(a,b) | l neg(a,b) £

neg(b,c) | ¢ neg ?a.; T,. heg(a,b) +

neg(c,a) l [al T.. (tr(b) | neg(a,b))
neg neg

Same circuit, three different degradation models by chaning the tr component:

— ol

interact once and die interact once and die

therwise stick d therwise d
_ Tr‘(p) £ Ipr ornerwise sr:fo, e:ccl):,cjktlc?m Tr‘(p) £ Ipr + T ° er‘rg.lcfio.Leh:Co%Z, §20.0001
= ab | A ab
. = e v v v v

0

140
120
100
20
S0
20
20

40000  sopoo epoOO0 O 1000 20000 30000

tr(p) & (Ip,; tr(p)) + t; /‘

10000 20000 30000 50000 80000 40000 Soooo £0000

intferact many times

and decay r=1.0, £=0.1, h=0.001, =0.001
T Hf*#ﬁﬂ [ | J#‘-;. . j f‘fvt. Jhl f*' (] E)
A ."ﬂm}‘f"{ ! AT R .,!,."_-‘lﬁ,;‘ h") . VAL o
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10000 20000 20000 40000 soooo soo0o0o 100000

Subtle.. at any point one gate is inhibited and the other two can fire constitutively. If one of them fires first,
nothing really changes, but if the other one fires first, then the cycle progresses.



Repressilator in SPiM

val dk = 0.001 (* Decay rate *)
val eta = 0.001 (* Inhibition rate *)
val cst = 0.1 (* Constitutive rate ¥*)

let tr(p:chan()) =

do !p; tr(p)
or delay@dk

let neg(a:chan(), b:chan(Q)) =
do ?a; delay@eta; neg(a,b)
or delay@cst; (tr(b) | neg(a,b))

(* The circuit *)
val bnd = 1.0 (* Protein binding rate *)
new a@bnd: chan()
new b@bnd: chan()
new c@bnd: chan()

run (neg(c,a) | neg(a,b) | neg(b,c))



Repressilator ODE Model and Simulation

l Bruce E Shapiro
0 *Ri R ﬂz -0 Cellerator
Y—PY— 0
RNA ¢
) X—PX—0
RNA
d[X] _ a+aq[PY]" d[PX] _ ~
a =B gy X T = AUXI-PX])
d[Y]_ . a+aq[PZ" HY), d[PY — B{YI-[PY])
dt K" +[PZ]"
cl[Z]:aO+a+a1[PX]” M2 d[PZ]_IB{[Z 21)

dt K" +[PX]"




Guet et al.: DO38/lac-

Combinatorial Synthesis of Genetic Networks, Guet, Elowitz, Hsing, Leibler,

1996, Science, May 2002, 1466-1470.
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Gene-Protein Networks



Indirect Gene Effects

transcription protein protein transcription

No combination of standard (a) eor K phepeie e
high-throughput experiments | 1 o
can reconstruct an a-priori O

known gene/protein network ! T ! ! \ T
[Wagner']. DNA—E{’GeneHD—[TGene 2] —qune3| —[{.Gene4| QJ:{.Gene5|

(b) (c)

protein

Aspect of gene activity: mRNA expression Aspect of gene activity: phosphorylation state

Genetic perturbation: gene deletion Genetic perturbation: gene deletion

Gl: G2, G5 G1: G3.G4

G2: GS G2: G3.G4

Gl G5 G3: G4

G4 GS G4:

G5: GS: Taken from

Andreas Wagner

Fig. 1. The importance of specifiying gene activity when reconstructing genetic networks. (a) A hypothetical biochemical pathway involving
two transcription factors, a protein kinase, and a protein phosphatase. as well as the genes encoding them. See text for details. (b) Shown
is a list of perturbation effects for each of the five genes in (a), when perturbing individual genes by deleting them, and when using mRNA
expression level as an indicator of gene activity. The left-most symbol in each line stands for the perturbed gene. To the right of each colon is
a list of genes whose activity is affected by the perturbation. (¢) Analogous to (b} but for a different notion of gene activity (phosphorylation
state).

One of many bistable switches A B 4 AB B
that cannot be described by

@
pure gene regulatory networks I \
[Francois & Hakim].
a




Number of proteins

Frangois & Hakim Fig3A

PNAS (101)2, 580-585, 2004

Design of genetic networks with specified functions by evolution in

silico
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Frangois & Hakim Fig3A, SPiM simulation

Parameters as in paper

3 copies of each gene.
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Circuit of Fig 3A with parameters from SupportingText Fig 8, plotted in Fig 13A

Frangois & Hakim Fig3Ast8
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(* Francois and Hakim circuit 3A *)

val
val
val
val
val
val
val
val
val

Francois & Hakim 3A in SPiM

pntAunb = 0.42
geneACst = 0.20
geneBCst = 0.37
geneBInh = 0.027
bA = 0.19

AB = 0.72

dkA = 0.0085

dkB = 0.034

dkAB = 0.53

et

Jet

Jet

Tet

Tet

and

run

ptnAQ) =
(new unb@pntAunb
do delay@dkA or !AB or !bACunb);(?unb; ptnA(Q)))

ptnB() =

do delay@dkB or ?AB;cpxAB()

cpxAB() = delay@dkAB InTeraCTion
oriented

geneA() =

delay@geneACst; (ptnA() | geneA())

geneBfree() =
do delay@geneBCst; (ptnB() | geneBfree())
or ?bACunb); geneBbound(unb)

geneBbound(unb:ch()) =
do delay@geneBInh; (ptnB() | geneBbound(unb))

or lunb; geneBfree()

(geneA() | geneBfree())



Scaling up:
ODE vs Process
Descriptions



From Chemical Reactions to ODE's

i A*B ok, C+C Dk
rs A+C —k, D Write the coefficients A J\ C

2
ry: C —ks E+F by columns o _
’ F ’ B _ Stoichiometric Ky
ry F —kq reactions Matrix
N{ri[ra|rs|rs
Concentration Al-1]-1 B C
changes § B | -1 1 ; k3
Stoichiometric olC|2]|-1]-1 4 FJK, E
matrix Y
a|D 1
Qa‘re laws ? E 1
dlx F 1]-1
[x] _ i

dt N / Read the rate laws
from the columns

d[A]/dt = -v, - v, Read the concentration

vi(x,e; k)
dIB1/dt = -v. + v changes from the rows i\%CiR . |
AVt = 2y T
! ° 3 Vi kl'[A]'[B] v: rate laws
d[D]/dt = v, Vol Ky [AT[C] k: kinetic parameters
d[E)/dt = v E.g. d[A)/dt = vi| ks [C] N: stoichiometric matrix
d[F]/d‘l’ = vy - v, -k, [A][B] - k,[A][C] Vg ky[F] e: catalysts (if any)



From Chemical Reactions to Processes

oi A+B —sk, C+C Dk
rs A+C —k, D Write the coefficients A J\Z C

ry: C —k, E+F by columns L :
| _ Stoichiometric ki
re F —k, B Interactions Matrix

Nf[r|rofrs|ry
Al-1]-1 B C
‘§ B [-1 1 . | ks
vwilcla]-1]-1 Ky F -
: g o Q
For binary reactoins, first species in O[D 1
the column does an input and o
produces result, second species does C E 1
an ouput, For unary reactions, Q.
species does a tau action and F 11-1
produces result. No ternary
reactions. /
A= ?Vlkl.(C|C) + ?VZkZ-D +?a Add a bartb Read the process
| for counting . . f h
B = lvik+2b and plotting interactions from the rows
C = v,k, + Tk (E|F) + 2
D=0+2d (Rate laws are implicit in
E=0+% stochastic semantics)

F = tk;,.B+f



Stoichiometric Matrices Blow Up

e We can translate Chemistry to ODE's or Processes
- It is standard to go from chemical equations to ODE's via a stoichiometric
matrix.

- It is similarly possible to go from chemical equations to processes via a
stoichiometric matrix.

e But there is a better way:

- Stoichiometric matrices blow-up exponentially for biochemical systems
(unlike for ordinary chemical systems) because proteins have combinatorial
state and complexed states are common.

- To avoid this explosion, we should describe biochemical systems
compositionally without going through a stochiometric matrix (and hence
without ODE's).



Complexes: The ODE Way

n A B, C ABC = A BC
: _ The matrix is very sparse, so
domains ABC = AB,C the corresponding ODE system
2 A= Ap ABC ABC = ABC, is not dense. But it still has 2"
n B=R A BC ABC=ARBC equations, one per species, plus
domain P P ApBC _ ApoC conservation equations
reactions C = C, AB.C pPC = ApBCh  ([ABCI[A,BCI=constant, etc.).
AB.C= AB.C
ABC, 72 L)) p PP
L X ABC AU ABC AB.C = AB,C, L
species | " reactions  ABC = A BC System description is
complex ApBC, ABCP L AE CP exponential in the number
[ PP :
j\\Bé,CCp ABLC=ABLC, of basic components.
PTPTP A,BC, = A,B.C,
Stoichiometric ABC, = ABLC,

Matrix

N Vi V2 V3 Vy Vs Ve V7 Vg Vo Vio Vi Vi Vi3 Vig Vis Vie Viz Vig Vig Vao Va1 Va2 Va3 Vas

ABC

ApBC

ABpC

2n x 2n(2n1)

ApBpC

ApBCp l

ABpCp

ApBpCp




Complexes: The Reactive System Way

A= AID
B=R
A C Cp
domain ~7p
reactions

A =?knA, A, =?phA

2n

B =?knB, B,=?ph:B

processes C = ?knﬁcp Cp = 7ph,C

ASA|B|C

\ System description is

When the local domain reactions are not independent,

we can use lateral communication so that each
component is aware of the relevant others.

linear in the number of
basic components.

(Its "run-time" behavior or
analysis potentially blows-up just
as in the previous case, but its
description does not.)




Model Validation



Model Validation: Simulation

e Basic stochastic algorithm: Gillespie
- Exact (i.e. based on physics) stochastic simulation of chemical kinetics.
- Can compute concentrations and reaction times for biochemical networks.

e Stochastic Process Calculi
- BioSPi [Shapiro, Regev, Priami, et. al.]
e Stochastic process calculus based on Gillespie.
- BioAmbients [Regev, Panina, Silverma, Cardelli, Shapiro]
e Extension of BioSpi for membranes.
Case study: Lymphocytes in Inflamed Blood Vessels eca, priami, quagial
e Original analysis of lymphocyte rolling in blood vessels of different diameters.
Case STUdyl Lambda Switch (ceiine kuttler, 1r1 Lille]
e Model of phage lambda genome (well-studied system).

Case study: VICE w risq

e Minimal prokaryote genome (180 genes) and metabolism of who/e VIrtual CEll, in
stochastic n-calculus, simulated under stable conditions for 40K transitions.

e Hybrid approaches

- Charon language rveenn
e Hybrid systems: continuous differential equations + discrete/stochastic mode
switching.
- Etc.



Model Validation: “"Program” Analysis

e Causality Analysis

- Biochemical pathways, ("concurrent traces”
such as the one here), are found in biology
publications, summarizing known facts.

- This one, however, was automatically P
genem’red_from a program writfen in BioSpi ;
by comparing traces of all possible ;
Interactions. [Curti, Priami, Degano, Baldari] \.,\3

- Ong Can play Wi-‘.h The pr.ogr.am 1.0 inveSTigaTe Fig.2. A computation of Sys. For llezlidabiliL_',"es:'ses‘ enclosed in boxes, have
various hypotheses about the pathways. i g o e e et T o

e Control Flow Analysis

- Flow analysis techniques applied to process
caleuli.

- Overapproximation of behavior used to
answer questions about what "cannot
happen”.

- AnalTsis of positive feedback transcription
regulation in BioAmbients [Flemming Nielson].

e Probabilistic Abstract Interpretation
- [DiPierro Wicklicky].



Model Validation: Modelchecking

e Temporal
- Software verification of biomolecular systems (NA pump)

[Ciobanu]

- Analxsis of mammalian cell cycle (after Kohn) in CTL.

[Chabrier-Rivier Chiaverini Danos Fages Schachter]

e E.g. is state S; a necessary checkpoint for reaching state S,?

e Quantitative: Simpathica/xssys

[Antioniotti Park Policriti Ugel Mishra]

- Quantitative TemForal logic queries of human Purine
metabolism model.

Eventually(Always (PRPP = 1.7 * PRPP1)
implies
steady_state()
and Eventually(Always(IMP < 2 * TMP1))
and Eventually(Always(hx_pool < 10*hx_pool1)))

e Stochastic: Spring

[Parker Normal Kwiatkowska]
- Designed for stochastic (computer) network analysis
e Discrete and Continuous Markov Processes.
e Process input language.
e Modelchecking of probabilistic queries.



What Reactive Systems Do For Us

We can write things down precisely We can reason

- We can modularly describe high structural -
and combinatorial complexity ("do
programming").

We can calculate and analyze
- Directly support simulation.

- Support analysis (e.g. control flow, causality,
nondeterminism).

- Support state exploration (modelchecking).

We can visualize
- Automata-like presentations.
- Petri-Net-like presentations.
- State Charts, Live Sequence Charts [Harel]
e Hierarchical automata.
e Scenario composition.

Suitable equivalences on processes
induce algebraic laws.

We can relate different systems
(e.g. equivalent behaviors).

We can relate different abstraction
levels.

We can use equivalences for state
minimization (symmetries).

Disclaimers

Some of these technologies are basically
ready (medium-scale stochastic simulation and
analysis, medium-scale nondeterministic and
stochastic modelchecking).

Others need to scale up significantly to be
really useful. This is (has been) the challenge
for computer scientists.

Many approaches, same basic philosophy, tools being built:
= Proc. Computational Methodls in Systems Biology [2003-2005]



Conclusions

gy ( + "The data are accumulating and

NTI '
EEE:EQ\KQ ;f;’g: e the computers are humming,

s what we are lacking are the
?\;t ',E)G(GC%A; words, the grammar and the
74

CGCATAACTG syntax of a new language..."
D. Bray (TIBS 22(9):325-326, 1997)

S|
%\ : “The most advanced tools for

computer process description
seem to be also the best tools
for the description of

s+ : .
/ biomolecular systems.
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Papers
BioAmbients
a stochastic calculus with compartments.
Brane Calculi
process calculi with computation "on" the membranes, not inside them.
Bitonal Systems
membrane reactions and their connections to “local” patch reactions.
Abstract Machines of Systems Biology
the abstract machines implemented by biochemical toolkits.
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