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50 Years of Molecular Cell Biology

● Genes are made of DNA
– Store digital information as sequences of 4 
different nucleotides

– Direct protein assembly through RNA and the 
Genetic Code

● Proteins (>10000) are made of amino acids
– Process signals

– Activate genes 

– Move materials

– Catalyze reactions to produce substances

– Control energy production and consumption

● Bootstrapping still a mystery
– DNA, RNA, proteins, membranes are today 
interdependent. Not clear who came first

– Separation of tasks happened a long time ago

– Not understood, not essential
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Towards Systems Biology

● Biologists now understand many of the cellular components
– A whole team of biologists will typically study a single protein for years
– Reductionism: understand the components in order to understand the system

● But this has not led to understand how “the system” works
– Behavior comes from complex patterns of interactions between components
– Predictive biology and pharmacology still rare
– Synthetic biology still unreliable

● New approach: try to understand “the system”
– Experimentally: massive data gathering and data mining (e.g. Genome projects)
– Conceptually: modeling and analyzing networks (i.e. interactions) of components

● What kind of a system?
– Just beyond the basic chemistry of energy and materials processing…
– Built right out of digital information (DNA)
– Based on information processing for both survival and evolution
– Highly concurrent

● Can we fix it when it breaks?
– Really becomes: How is information structured and processed?
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Storing Processes

● Today we represent, store, search, and analyze:
– Gene sequence data

– Protein structure data

– Metabolic network data

– Signaling pathway data

– …

● How can we represent, store, and analyze biological processes?
– Scalable, precise, dynamic, highly structured, maintainable representations 
for systems biology.

– Not just huge lists of chemical reactions or differential equations.

● In computing…
– There are well-established scalable representations of dynamic reactive 
processes.

– They look more or less like little, mathematically based, programming 
languages.

Cellular Abstractions: Cells as Computation
Regev&Shapiro NATURE vol 419, 2002-09-26, 343
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Structural Architecture

Nuclear
membrane

Membranes
everywhere

Mitochondria

Plasma 
membrane
(<10% of all 
membranes)

Vesicles

Eukaryotic
Cell

(10~100 trillion 
in human body)

Golgi

E.R.

H.Lodish et al.
Molecular Cell Biology 
fourth edition p.1
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Abstract Machines of Systems Biology
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Abstract Machines of Systems Biology
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Reactive Systems

● Modeling biological systems
– Not as continuous systems (often highly nonlinear)

– But as discrete reactive systems; abstract machines with:
●States represent situations

●Event-driven transitions between states represent dynamics

– The adequacy of describing (discrete) complex systems as reactive systems 
has been argued convincingly [Harel]

● Many biological systems exhibit features of reactive systems:
– Deep layering of abstractions

– Complex composition of simple components

– Discrete transitions between states

– Digital coding and processing of information

– Reactive information-driven behavior

– High degree of concurrency and nondeterminism

– “Emergent behavior” not obvious from part list



2005-08-26 9

Stochastic ππππ-calculus Executive Summary

● A simple variant of π-calculus: 
– Channels have stochastic “firing”
rates with exponential distribution.

– Nondeterministic choice becomes 
stochastic race.

– Cuts down to CTMCs (Continuous 
Time Markov Chains) in the finite 
case (not always). Then, standard 
analytical tools are applicable.

– Can be given friendly automata-like 
scalable graphical syntax (work 
with Andrew Phillips).

– Is directly executable (via the 
Gillespie algorithm from physical 
chemistry).

– Is analyzable (large body of 
literature, at least in the non-
stochastic case).

A.Phillips, L.Cardelli. BioConcur’04.
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● A deterministic system:
– May get “stuck in a fixpoint”. 

– And hence never oscillate.

● A similar stochastic system:
– May be “thrown off the fixpoint” by 

stochastic noise, entering a long orbit 
that will later bring it back to the fixpoint. 

– And hence oscillate.

Importance of Stochastic Effects

Mechanisms of noise-
resistance in genetic 
oscillators

Jose´ M. G. Vilar, Hao
Yuan Kueh, Naama Barkai, 
Stanislas Leibler

PNAS  April 30, 2002  vol. 
99  no. 9  p.5991



Gene Networks
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The Gene Machine

Taken from
Leroy Hood

The “Central Dogma” of Molecular Biology

transcription translation interaction

folding

regulation

4-letter
digital code

4-letter
digital code

20-letter
digital code

50.000(?) 
shapes

Lactose Operon

Taken from
Pedro Mendes

DNA Tutorial
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The Gene Machine “Instruction Set”

Coding region

Positive Regulation

TranscriptionNegative Regulation

Regulatory region

Gene
(Stretch of DNA)

Regulation of a gene (positive and 
negative) influences 
transcription. The regulatory 
region has precise DNA 
sequences, but not meant for 
coding proteins: meant for 
binding regulators.

Transcription produces molecules 
(RNA or, through RNA, proteins) 
that bind to regulatory region of 
other genes (or that are end-
products).

Human (and mammalian) Genome Size
3Gbp (Giga base pairs) 750MB @ 4bp/Byte (CD)
Non-repetitive: 1Gbp 250MB
In genes: 320Mbp 80MB
Coding: 160Mbp 40MB
Protein-coding genes: 30,000-40,000

M.Genitalium (smallest true organism)
580,073bp 145KB (eBook)

E.Coli (bacteria): 4Mbp 1MB (floppy)
Yeast (eukarya): 12Mbp 3MB (MP3 song)
Wheat 17Gbp 4.25GB (DVD)

Input Output
Input

Output1Output2

“External Choice”
The phage 

lambda switch
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Gene Composition

a b

Under the assumptions [Kim & Tidor]
1) The solution is well-stirred

(no spatial dependence on concentrations or rates).
2) There is no regulation cross-talk.
3) Control of expression is at transcription level only 

(no RNA-RNA or RNA-protein effects)
4) Transcriptions and translation rates monotonically 

affect mRNA and protein concentrations resp.

Is a shorthand for:

gene
b

mRNA

protein

a

A B

translation

transcription

regulation

degradation

a b a b

Ex: Bistable Switch

a b

c

a b

c

a b

c
Expressed

Repressed

Expressing

Ex: Oscillator
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E.H.Davidson, D.R.McClay, L.Hood. Regulatory gene 
networks and the properties of the developmental 

process. PNAS 100(4):1475–1480, 2003.

Gene Regulatory Networks

NetBuilder
http://strc.herts.ac.uk/bio/maria/NetBuilder/

Or

And

GateAmplify
Sum

DNA
Begin coding region

C-H.Yuh, H.Bolouri, E.H.Davidson. Genomic Cis-Regulatory Logic: Experimental and 
Computational Analysis of a Sea Urchin Gene. Science 279:1896-1902, 1998
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(The Classical ODE Approach)
[Chen, He, Church]

Genes mRNA Proteins

Degradation

C L

V U

r p

d r
dt

= f (p) - V r

d p
dt

= L r - U r

n: number of genes
r mRNA concentrations (n-dim vector)
p protein concentrations (n-dim vector)

f (p) transcription functions: 
(n-dim vector polynomials on p)

I.e.: to model an operating 
system, write a set of 
differential equations relating 
the concentrations in memory 
of data structures and stack 
frames over time. (Duh!)
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Nullary Gate

b

null

stochastic delay (τ) with 
rate ε of constitutive 

transcription 

output protein 
(transcripion factor), 

spawn out

and repeat
(recursive, parametric) 

process definition

null(b) @ τε; (tr(b) | null(b))

interaction site of 
output protein

spontaneous 
(“constitutive”) 

outputno input

A stochastic rate r is always associated with each channel ar (at channel 
creation time) and delay τr, but is often omitted when unambiguous.
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Production and Degradation
Degradation is extremely important and often deliberate; 
it changes unbounded growth into (roughly) stable signals.

(output, !) interaction with rate r
(input, ?, is on the target gene)

tr(p) @ (!pr; tr(p)) + τδ

degradation rate δ

transcripton
factor

and repeat

time

null(b) @ τε; (tr(b) | null(b))
b

null

product

ε=0.1, δ=0.001

interaction 
offers on b

(= number of tr
processes)

combined effect of 
production and 

degradation (without 
any interaction on b) null(b)

interaction site of 
transcription factor

degradation

A transcription factor is a process (not a message or a channel): 
it has behavior such as interaction on p and degradation.

stochastic choice 
(race between r and δ)

b
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Unary Pos Gate

pos

a b

output (stimulated 
or constitutive)

input 
(excitatory)

pos(a,b) @
?ar; τη; (tr(b) | pos(a,b)) + 
τε; (tr(b) | pos(a,b)) 

*tr(ar) | pos(ar,b)

pos(a,b)

parallel, not sequence, 
to handle self-loops 
without deadlock

(input, ?) interaction with rate r

or constitutive transcription
to always get things started

output protein

unlimited 
amount of

Constitutive

Stimulated

b
r=1.0, ε=0.01, η=0.1, δ=0.001

transcripton delay 
with rate η

race between 
r and ε
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Unary Neg Gate

a b

neg

output (constitutive 
when not inhibited)

input 
(inhibitory)

neg(a,b) @
?ar; τη; neg(a,b) + 
τε; (tr(b) | neg(a,b)) 

inhibition delay 
with rate η

or constitutive transcription
to always get things started

(input, ?) interaction with rate r

neg(ar,b)

*tr(ar) | neg(ar,b)

Constitutive

Inhibited

r=1.0, ε=0.1, η=0.01, δ=0.001

b

race between 
r and ε
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Signal Amplification

pos

a

pos

cb

tr(p) @ (!pr; tr(p)) + τδ

pos(a,b) @
?ar; τη; (tr(b) | pos(a,b)) + 
τε; (tr(b) | pos(a,b))

E.g. 1 a that 
interacts twice 
before decay can 
produces 2 b that 
each interact twice 
before decay, which 
produce 4 c…

pos(a,b) | 
pos(b,c)

pos(a,b) | pos(b,c)

With little degradation

r=1.0, ε=0.01, η=0.1, δ=0.00001

a
b

c
r=1.0, ε=0.01, η=0.1, δ=0.001

a

b

c

even with no a input, 
consitutive production 
of b gets amplified to 

a high c signal

pos(a,b) | pos(b,c)
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Signal Normalization

negneg

a cbneg(a,b) | 
neg(b,c) 

neg(a,b) @
?ar; τη; neg(a,b) + 
τε; (tr(b) | neg(a,b)) 

tr(p) @ (!pr; tr(p)) + τδ

a

b
c

a non-zero input level, a, 
whether weak or strong, 

is renormalized to a 
standard level, c.

30*tr(a) | neg(a,b) | neg(b,c)

r=1.0, ε=0.1, η=0.01, δ=0.001
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r=1.0, ε=10.0, h=1.0, δ=0.005

neg(a,a)

a

Self Feedback Circuits

pos(a,a) neg(a,a) 
a

neg

a

pos

neg(a,b) @
?ar; τη; neg(a,b) + 
τε; (tr(b) | neg(a,b)) 

tr(p) @ (!pr; tr(p)) + τδ

r=1.0, ε=0.1, δ=0.01

pos(a,a)

a

pos(a,b) @
?ar; (tr(b) | pos(a,b)) + 
τε; (tr(b) | pos(a,b)) 

tr(p) @ (!pr; tr(p)) + τδ

δ=0.0005Less degradation

And a bit less δ=0.0001

high, to raise 
the signal

(Can overwhelm degradation, 
depending on parameters)
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Two-gate Feedback Circuits

negpos

b

a

pos(b,a) |
neg(a,b) 

neg(b,a) |
neg(a,b) 

negneg

b

a

For some degradation rates is quite stable:

r=1.0, ε=0.1, h=0.01, δ=0.0005

pos(b,a) | neg(a,b)

aa

bb

r=1.0, ε=0.1, h=0.01, δ=0.0001

But with a small change in degradation, it goes wild:

pos(b,a) | neg(a,b)

a

b

Bistable:

a b

ab

r=1.0, ε=0.1, h=0.01, δ=0.001

neg(b,a) | neg(a,b)

ε=0.1, h=0.01, δ=0.001

5 runs with r(a)=0.1, 
r(b)=1.0 shows that 
circuit is now biased 
towards expressing b

b

Monostable:
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neg(a,b) @
?ar; τη; neg(a,b) + 
τε; (tr(b) | neg(a,b)) 

Repressilator

neg neg

negc b

a

neg(a,b) |
neg(b,c) |
neg(c,a) 

tr(p) @ !pr tr(p) @ !pr + τδ

tr(p) @ (!pr; tr(p)) + τδ

r=1.0, ε=0.1, h=0.04 r=1.0, ε=0.1, h=0.04, δ=0.0001

r=1.0, ε=0.1, h=0.001, δ=0.001

a b c a b c

a b c

Same circuit, three different degradation models by chaining the tr component:

Subtle… at any point one gate is inhibited and the other two can fire constitutively. If one of them fires first, 
nothing really changes, but if the other one fires first, then the cycle progresses.

interact once and die
otherwise stick around

interact once and die
otherwise decay

interact many times
and decay
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System Properties: Oscillation Parameters

r = 0.1 r = 10.0
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The constitutive rate ε (together with the degradation rate) determines 
oscillation amplitude, while the inhibition rate η determines oscillation frequency. 

We can view the interaction rate r as a measure of the volume (or temperature) 
of the solution; that is, of how often transcription factors bump into gates. 
Oscillation frequency and amplitude remain unaffected in a large range of 
variation of r. 
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Repressilator in SPiM

valvalvalval dkdkdkdk = 0.001 = 0.001 = 0.001 = 0.001 (* Decay rate *)(* Decay rate *)(* Decay rate *)(* Decay rate *)

valvalvalval etaetaetaeta = 0.001= 0.001= 0.001= 0.001 (* Inhibition rate *)(* Inhibition rate *)(* Inhibition rate *)(* Inhibition rate *)

valvalvalval cstcstcstcst = 0.1= 0.1= 0.1= 0.1 (* Constitutive rate *)(* Constitutive rate *)(* Constitutive rate *)(* Constitutive rate *)

let let let let tr(p:chantr(p:chantr(p:chantr(p:chan()) = ()) = ()) = ()) = 

do !p; do !p; do !p; do !p; tr(ptr(ptr(ptr(p))))

or or or or delay@dkdelay@dkdelay@dkdelay@dk

let let let let neg(a:channeg(a:channeg(a:channeg(a:chan(), (), (), (), b:chanb:chanb:chanb:chan()) =()) =()) =()) =

do ?a; do ?a; do ?a; do ?a; delay@etadelay@etadelay@etadelay@eta; ; ; ; neg(a,bneg(a,bneg(a,bneg(a,b))))

or or or or delay@cstdelay@cstdelay@cstdelay@cst; (; (; (; (tr(btr(btr(btr(b) | ) | ) | ) | neg(a,bneg(a,bneg(a,bneg(a,b))))))))

(* The circuit *)(* The circuit *)(* The circuit *)(* The circuit *)

valvalvalval bndbndbndbnd = 1.0= 1.0= 1.0= 1.0 (* Protein binding rate *)(* Protein binding rate *)(* Protein binding rate *)(* Protein binding rate *)

new new new new a@bnda@bnda@bnda@bnd: : : : chanchanchanchan() () () () 

new new new new b@bndb@bndb@bndb@bnd: : : : chanchanchanchan() () () () 

new new new new c@bndc@bndc@bndc@bnd: : : : chanchanchanchan()()()()

run (run (run (run (neg(c,aneg(c,aneg(c,aneg(c,a) | ) | ) | ) | neg(a,bneg(a,bneg(a,bneg(a,b) | ) | ) | ) | neg(b,cneg(b,cneg(b,cneg(b,c))))))))
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System Properties: Fixpoints

0
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A sequence of neg
gates behaves as 
expected, with 
alternating signals, 
(less “Booleanly”
depending on 
attenuation).

Now add a self-loop 
at the head. Not a 
Boolean circuit!

No more alternations, 
because… each gate 
is at its fixpoint. 

unstable all low!
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Guet et al.

TetR

tet lac

LacI

cI

λλλλcI

gfp

GFP
IPTGaTc

PT PL2PT Pλλλλ
-

Combinatorial Synthesis of Genetic Networks, Guet, Elowitz, Hsing, Leibler, 
1996, Science, May 2002, 1466-1470.

They engineered in E.Coli all genetic circuits with four single-
input gates; such as this one:

Then they measured the GFP output (a fluorescent protein) in presence or 
absence of each of two inhibitors (aTc and IPTG). 

The output of some 
circuits did not seem 
to make any sense…

Here “1” means “high brightness” and “0” means “low brightness” on a 
population of bacteria after some time. (I.e. integrated in space and time.) 

Experiment:

aTc 0101

IPTG 0011

GFP 0100
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Further Building Blocks

a p()

negp

Negp Gate

(ε,η)
negp(a,(ε,η),p) =

?a. τη. negp(a,(ε,η),p) + 
τε. (p() | negp(a,(ε,η),p)) 

regulatory

input product

rates

product generation

interaction

rtr(b,r) = 

!b. rtr(b,r) + 

!r. 0 + 

τδ. 0 degradation

repressible factor

binding

repressioninteraction

delay

rep(r) = ?r. rep(r) repressor

arbitray amounts of..

b

r

rtr(b,r)



2005-08-26 31

D038/lac-

TetR

tet lac

LacI

cI

lcI

gfp

GFP

IPTGaTc

PT PL
2PT Pλ

-

D038/lac-
Experiment:

aTc 0101

IPTG 0011

GFP 0100

channels TetR:r
1
, LacI:r

2
, lcI:r

3
, GFP:r

4
, aTc:r

5
, IPTG:r

6

PT = (εεεε
1
, ηηηη

1
) PL

2 = (εεεε2, ηηηη2) Pλ
- = (εεεε3, ηηηη3)

tet = negp(TetR, PT, rtr(TetR,aTc))

lac = negp(TetR, PT, rtr(LacI,IPTG))

cI = negp(LacI, PL
2, tr(lcI))

gfp = negp(lcI, Pλ
-, tr(GFP))

D038lac- =  tet | lac | cI | gfp |  rep(aTc) | rep(IPTG)

repressors

(when present)

promoters

genes

molecules

Naïve “Boolean” analysis would 

suggest GFP=0.5 (oscillation) 

because of self-loop.

GFP=0 there is consistent only 

with (somehow) the head loop 

setting TetR=LacI=0. But in that 

case, aTc should have no effect (it 

can only subtract from those 

signals) but instead it sets GFP=1.

Hence we need to 
understand better the 
“dynamics” of this network.
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Simulation results for D038/lac-

TetR

tet lac

LacI

cI

lcI

gfp

GFP

IPTGaTc

PT PL
2PT Pλ

-

D038/lac-

Experiment:

aTc 0101

IPTG 0011

GFP 0100

r=1.0, ε=0.1, h=1.0, δ=0.001
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r = 1.0,  ε = 0.1,  η = 0.25 (PT),  η = 1.0 (PL
2, Pλ

-),  δ = 0.001

GFP 

LacI

lcI

TetR

aTc = 0, IPTG = 0

aTc = 1, IPTG = 0

aTc = 0, IPTG = 1

aTc = 1, IPTG = 1

GFP

The fixpoint effect (all signals set 

very low) can explain this.

The fixpoint effect can explain this 

(all signals set very low).

The, aTc can destabilize the fixpoint, 

explaining GFP high (oscillating) 

Then, aTc can destabilize the fixpoint, 

explaining GFP high (oscillating) 
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D016/lac-

channels TetR:r
1
, LacI:r

2
, lcI:r

3
, GFP:r

4
, aTc:r

5
, IPTG:r

6

PT = [εεεε
1
, ηηηη

1
] PL

2 = [εεεε2, ηηηη2] Pλ
- = [εεεε3, ηηηη3] PL

1 = [εεεε4, ηηηη4]

tet = negp[TetR, PT, rtr[TetR,aTc]]

lac = negp[LacI, PL
1, rtr[LacI,IPTG]]

cI = negp[LacI, PL
2, tr[lcI]]

gfp = negp[lcI, Pλ
-, tr[GFP]]

D016lac- =  tet | lac | cI | gfp |  rep[aTc] | rep[IPTG]

repressors

promoters

genes

D016/lac-

TetR

tet lac

LacI

cI

lcI

gfp

GFP

IPTGaTc

PT PL
2 Pλ

-PL
1

Experiment:

aTc 0101

IPTG 0011

GFP 1000 One theory: aTc prevents 
the self-inhibition of tet, so 
that a very large quantity of 
TetR is produced. That then 
overloads the overall 
degradation machinery of 
the cell, affecting the rest 
of the circuit.

How can aTc

affect the result??

Even so, how can 

GFP be high here?

Even the fixpoint
explanation fails here, 
unless we assume that 
the lac gate is 
operating in its 
instability region.
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Simulation results for D016/lac-
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aTc = 1 (δ = 0.00001), IPTG = 0

δ = 0.005 aTc = 0,  IPTG = 0

GFP

The fixpoint effect, in 

instability region, explains 

this: GFP high because 

wildly oscillating.

Experiment:

aTc 0101

IPTG 0011

GFP 1000

The fixpoint effect, in 

instability region, explains 

this: GFP high because 

wildly oscillating.

Overloading of 

degradation machinery, 

induced by aTc, can 

reinstate the fixpoint

regime.

Overloading of 

degradation machinery, 

induced by aTc, can 

reinstate the fixpoint

regime.
D016/lac-

TetR

tet lac

LacI

cI

lcI

gfp

GFP

IPTGaTc

PT PL
2 Pλ
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What was the point?

● Deliberately pick a controversial/unsettled example to test the 
methodology.

● Show that we can easily “play with the model” and run simulations.

● Get a feeling for the kind of subtle effects that may play a role. 

● Get a feeling for kind of analysis that is required to understand the 
behavior of these systems.

● In the end, we are never “understanding” anything; we are just building 
theories/models that support of contradict experiments (and that
suggest further experiments).



Model Validation
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Model Validation: Simulation

● Basic stochastic algorithm: Gillespie
– Exact (i.e. based on physics) stochastic simulation of chemical kinetics.
– Can compute concentrations and reaction times for biochemical networks.

● Stochastic Process Calculi
– BioSPi [Shapiro, Regev, Priami, et. al.]

●Stochastic process calculus based on Gillespie.
– BioAmbients [Regev, Panina, Silverma, Cardelli, Shapiro]

●Extension of BioSpi for membranes.
– Case study: Lymphocytes in Inflamed Blood Vessels [Lecaa, Priami, Quaglia]

●Original analysis of lymphocyte rolling in blood vessels of different diameters.
– Case study: Lambda Switch [Celine Kuttler, IRI Lille]

●Model of phage lambda genome (well-studied system).
– Case study: VICE [U. Pisa]

●Minimal prokaryote genome (180 genes) and metabolism of whole VIrtual CEll, in 
stochastic π-calculus, simulated under stable conditions for 40K transitions.

● Hybrid approaches
– Charon language [UPenn]

●Hybrid systems: continuous differential equations + discrete/stochastic mode 
switching.

– Etc.
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Model Validation: “Program” Analysis

● Causality Analysis
– Biochemical pathways, (“concurrent traces”
such as the one here), are found in biology 
publications, summarizing known facts.  

– This one, however, was automatically 
generated from a program written in BioSpi 
by comparing traces of all possible 
interactions. [Curti, Priami, Degano, Baldari]

– One can play with the program to investigate 
various hypotheses about the pathways.

● Control Flow Analysis
– Flow analysis techniques applied to process 
calculi.

– Overapproximation of behavior used to 
answer questions about what “cannot 
happen”.

– Analysis of positive feedback transcription 
regulation in BioAmbients [Flemming Nielson].

● Probabilistic Abstract Interpretation
– [DiPierro Wicklicky].
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Model Validation: Modelchecking

● Temporal
– Software verification of biomolecular systems (NA pump)

[Ciobanu]

– Analysis of mammalian cell cycle (after Kohn) in CTL.
[Chabrier-Rivier Chiaverini Danos Fages Schachter]

●E.g. is state S1 a necessary checkpoint for reaching state S2?

● Quantitative: Simpathica/xssys
[Antioniotti Park Policriti Ugel Mishra]

– Quantitative temporal logic queries of human Purine 
metabolism model.

● Stochastic: Spring
[Parker Normal Kwiatkowska]

– Designed for stochastic (computer) network analysis
●Discrete and Continuous Markov Processes.
● Process input language.
●Modelchecking of probabilistic queries. 

Eventually(Always (PRPP = 1.7 * PRPP1)
implies
steady_state()
and Eventually(Always(IMP < 2 * IMP1))
and Eventually(Always(hx_pool < 10*hx_pool1)))
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What Reactive Systems Do For Us

We can write things down precisely
– We can modularly describe high structural 

and combinatorial complexity (“do 
programming”).

We can calculate and analyze
– Directly support simulation.
– Support analysis (e.g. control flow, causality, 

nondeterminism).
– Support state exploration (modelchecking).

We can visualize
– Automata-like presentations.
– Petri-Net-like presentations.
– State Charts, Live Sequence Charts [Harel]

●Hierarchical automata.
●Scenario composition.

We can reason
– Suitable equivalences on processes 

induce algebraic laws.
– We can relate different systems (e.g. 

equivalent behaviors).
– We can relate different abstraction 

levels.
– We can use equivalences for state 

minimization (symmetries).

Disclaimers
– Some of these technologies are basically 

ready (medium-scale stochastic simulation and 
analysis, medium-scale nondeterministic and 
stochastic modelchecking).

– Others need to scale up significantly to be 
really useful. This is (has been) the challenge 
for computer scientists.

Many approaches, same basic philosophy, tools being built:
⇒ Proc. Computational Methods in Systems Biology [2003-2005]



Conclusions
“The data are accumulating and 
the computers are humming, 
what we are lacking are the 
words, the grammar and the 
syntax of a new language…”

D. Bray (TIBS 22(9):325-326, 1997)

“The most advanced tools for 
computer process description 
seem to be also the best tools 
for the description of 
biomolecular systems.”

E.Shapiro (Lecture Notes)

Q:

A:
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Papers
BioAmbients

a stochastic calculus with compartments.
Brane Calculi

process calculi with computation “on” the membranes, not inside them.
Bitonal Systems

membrane reactions and their connections to “local” patch reactions.
Abstract Machines of Systems Biology

the abstract machines implemented by biochemical toolkits.

www.luca.demon.co.uk/BioComputing.htm


