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50 Years of Molecular Cell Biology

● Genes are made of DNA
– Store digital information as sequences of 4 
different nucleotides

– Direct protein assembly through RNA and the 
Genetic Code

● Proteins (>10000) are made of amino acids
– Process signals

– Activate genes 

– Move materials

– Catalyze reactions to produce substances

– Control energy production and consumption

● Bootstrapping still a mystery
– DNA, RNA, proteins, membranes are today 
interdependent. Not clear who came first

– Separation of tasks happened a long time ago

– Not understood, not essential
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Towards Systems Biology

● Biologists now understand many of the cellular components
– A whole team of biologists will typically study a single protein for years
– Reductionism: understand the components in order to understand the system

● But this has not led to understand how “the system” works
– Behavior comes from complex patterns of interactions between components
– Predictive biology and pharmacology still rare
– Synthetic biology still unreliable

● New approach: try to understand “the system”
– Experimentally: massive data gathering and data mining (e.g. Genome projects)
– Conceptually: modeling and analyzing networks (i.e. interactions) of components

● What kind of a system?
– Just beyond the basic chemistry of energy and materials processing…
– Built right out of digital information (DNA)
– Based on information processing for both survival and evolution
– Highly concurrent

● Can we fix it when it breaks?
– Really becomes: How is information structured and processed?
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Storing Processes

● Today we represent, store, search, and analyze:
– Gene sequence data

– Protein structure data

– Metabolic network data

– Signaling pathway data

– …

● How can we represent, store, and analyze biological processes?
– Scalable, precise, dynamic, highly structured, maintainable representations 
for systems biology.

– Not just huge lists of chemical reactions or differential equations.

● In computing…
– There are well-established scalable representations of dynamic 
reactive processes.

– They look more or less like little, mathematically based, programming 
languages.

Cellular Abstractions: Cells as Computation
Regev&Shapiro NATURE vol 419, 2002-09-26, 343
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Structural Architecture
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(<10% of all 
membranes)
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Eukaryotic
Cell

(10~100 trillion 
in human body)

Golgi

E.R.

H.Lodish et al.
Molecular Cell Biology 
fourth edition p.1
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Abstract Machines of Systems Biology
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Reactive Systems

● Modeling biological systems
– Not as continuous systems (often highly nonlinear)

– But as discrete reactive systems; abstract machines where:
●States represent situations

●Event-driven transitions between states represent dynamics

– The adequacy of describing (discrete) complex systems as reactive systems 
has been argued convincingly [Harel]

● Many biological systems exhibit features of reactive systems:
– Discrete transitions between states

– Deep layering of abstractions (“steps” at multiple levels)

– Complexity from combinatorial interaction of simple components

– High degree of concurrency and nondeterminism

– “Emergent behavior” not obvious from part list
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r: A + B →k1 C + D
s: C + D →k2 A + B

A  =  !rk1; C
C  =  ?sk1; A

B  =  ?rk1; D
D  =  !sk2; B

Chemistry vs. ππππ-calculus

A

C

B

D

k1

rk1

A process calculus (chemistry) A different process calculus (π)

A Petri-Net-like representation. Precise and dynamic, 
but not modular, scalable, or maintainable.

A compositional graphical representation (precise, 
dynamic and modular) and the corresponding calculus.

Reaction
oriented

Interaction
oriented

Maps to 
a CTMC

Maps to 
a CTMC

The same “model”

Interaction
oriented

1 line per 
reaction

1 line per 
component

Does A 
become 
C or D?

A 
becomes 
C not D!

A

C

B

D
sk2

!rk1 ?rk1?sk2 !sk2
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1. The Protein Machine

An actual molecular interaction network.
(Nodes are distinct protein kinds, 
arcs mean that two kinds of proteins interact.)

Very close to 
the atoms.

● Complex folded-up shapes that:
– Fit together, dock, undock.

– Excite/unexcite, warp each other.

– Bring together, catalyze, transform materials.

– Form complex aggregates and networks.

● Mapping out such networks:
– In principle, it’s “just” a very large set of chemical equations.

– Notations have been developed to summarize and abstract.
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Protein Structure

Green Fluorescent Protein

Triose Phosphate Isomerase

http://www.cmbi.kun.nl/gvteach/bioinformatica1/

The 20 Aminoacids

Primary Secondary Tertiary Quaternary

Alpha Helix, Beta Sheet
Tryptophan



2006-04-03 11

Protein Function

Taken from
?the web?

Regulation

Structure

Movement

Metabolism

Transport

Signalling

Degradation

Assembly
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MIM: Molecular Interaction Maps (Kohn)

Taken from
Kurt W. Kohn
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Molecular Interaction Maps

K.W. Kohn. Molecular interaction map of the 
mammalian cell cycle control and DNA repair systems. 
Molecular Biology of the Cell 10(8):2703-34, 1999.

JDesigner
http://www.cds.caltech.edu/~hsauro/index.htm

The p53-Mdm2 and DNA Repair Regulatory Network
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The Protein Machine “Instruction Set”

Protein

On/Off switches

Binding Sites

Inaccessible

Inaccessible

Switching of accessible switches.
- May cause other switches and 
binding sites to become (in)accessible.
- May be triggered or inhibited by nearby specific 
proteins in specific states.

Binding on accessible sites.
- May cause other switches and 
binding sites to become (in)accessible.
- May be triggered or inhibited by nearby specific 
proteins in specific states.

Each protein has a structure 
of binary switches and binding sites.
But not all may be always accessible.

cf. BioCalculus [Kitano&Nagasaki], κ-calculus [Danos&Laneve]
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Notations for the Protein Machine

● Stochastic π-Calculus
– Priami (following Hillston’s PEPA) formalizes a 

stochastic version of p-calculus where channels 
have communication rates.

● BioSPi
– Regev-Shapiro-Silverman propose modeling 

chemical interactions (exchange of electrons and 
small molecules) as “communication”.

– Standard stochastic simulation algorithms 
(Gillespie) can be used to run in-silico 
experiments.

– Complex formation is encoded via p-restriction.

● PEPA
– Calder Gilmore and Hillston model the ERK 

pathway.

● k-calculus
– Danos and Laneve (following Kitano’s BioCalculus) 

define a calculus where complex formation is 
primitive.

● (Stochastic) Petri Nets
– S.Reddy’94 modeling pathways.
– Srivastava Perterson and Bentley analyze and 

simulate E.coli stress response circuit.

● Bio State Charts
– Harel uses State Charts to model biological 

interactions via a semi-graphical FSM notation.

● Pathway Logic
– Talcott-Eker-Knapp-Lincoln use term-rewriting. 

● BioCham
– ChabrierRivier-Fages-Soliman use term-rewriting 

and CLT modelchecking.

● Kohn Diagrams, Kitano Diagrams

● SBML (Systems Biology Markup Language)

– XML dialect for MIM’s:
● Compartments (statically nested)

● Reagents with concentrations

● Reactions with various rate laws

– Read and written by many tools
via the Systems Biology Workbench protocol
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MAPK Cascade

Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang 
and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.

10 chemical 
reactions

ReservoirsReservoirsReservoirs

Back EnzymesBack Enzymes
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The Circuit

K-PKKK KKK*

E1 

E2

KK KK-P

KK-P’ase

KK-PP K

K-P’ase

K-PP

(output)

(input)
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Enzymatic Reactions

S P

E

E+S ES P+E
c

d

e

S() @ new u@d new k@e
!ac(u,k); (!ud; S() + !ke; P())

E() @ ?ac(u,k); (?ud; E() + ?ke; E())

E

Pac ud ke

S

Reaction View

≡

Interaction View
bind

unbind

react
bind unbind react

P() @ …

private bindings between
one S and one E molecule

(c,d,e)

intermediate
complex
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MAPK Cascade Simulation in SPiM

Rates and concentrations from paper:

1xE2 (0.3 nM)

1xKKPase (0.3 nM)

120xKPase (120 nM)

3xKKK (3 nM)

1200xKK (1.2 uM)

1200xK (1.2 uM)

dx = rx = 150,  ax = 1  

(Kmx = (dx + rx) / ax, Km = 300 nM)

1xE1

K-PKKK KKK*

E1 

E2

KK KK-P

KK-P’ase

KK-PP K

K-P’ase

K-PP

(output)

(input)

KKK

KK

K

KK-P

K-P

1xE1   injected

KKK*

KK-PP

K-PP

1st stage: 
KKK* barely rises

2nd stage: 

KK-PP rises, but is not stable

3rd stage: 

K-PP flips up to max

even anticipating 2nd stage 
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MAPK Cascade Simulation in SPiM

K-PKKK KKK*

E1 

E2

KK KK-P

KK-P’ase

KK-PP K

K-P’ase

K-PP

(output)

(input)

All coefficients 1.0 !!!

100xKKK, 100xKK, 100xK,   

13xE2, 13xKKPse, 13xKPse.

nxE1 as indicated

(1xE1 is not sufficient to produce an output)
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Source: Jonathan W. Yewdell, Eric Reits, and Jacques Neefjes. Making sense of mass destruction: 

quantitating MHC class I antigen presentation. Nature Reviews Immunology, 3(12):952–961, 2003.

- part of the cellular immune response
- MHC class I complexes present self 
and foreign peptide at the cell surface
- recognized by T lymphocytes and 
natural killer cells
- also required for development of self 
tolerant T cells in thymus

MHC Class I Antigen Presentation
Flytrap model

Tapasin pathway

Egression

spontaneous

opening/closing

of empty MHC complex

peptide

Tapasin

MHC complex

MHC reopening

accelerated peptide 

dissociation
reduced closure 

trigger rate

stabilize open conformation

destabilize closed

conformation

- Continuous 
generation of 
HC/β2m and peptide
- Degradation of free 
empty HC/β2m and 
free peptide

A stochastic pi-calculus model of MHC class I
antigen presentation, Leonard Goldstein.

with Luca Cardelli and Andrew Phillips (Microsoft)
and Tim Elliott and Joern Werner (U. Southampton)
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2. The Gene Machine
Pretty far from 
the atoms.

Taken from
Leroy Hood

The “Central Dogma” of Molecular Biology

transcription translation interaction

folding

regulation

4-letter
digital code

4-letter
digital code

20-letter
digital code

50.000(?) 
shapes

Lactose Operon

Taken from
Pedro Mendes

DNA Tutorial
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The Gene Machine “Instruction Set”

Coding region

Positive Regulation

TranscriptionNegative Regulation

Regulatory region

Gene
(Stretch of DNA)

Regulation of a gene (positive and 
negative) influences 
transcription. The regulatory 
region has precise DNA 
sequences, but not meant for 
coding proteins: meant for 
binding regulators.

Transcription produces molecules 
(RNA or, through RNA, proteins) 
that bind to regulatory region of 
other genes (or that are end-
products).

Human (and mammalian) Genome Size
3Gbp (Giga base pairs) 750MB @ 4bp/Byte (CD)
Non-repetitive: 1Gbp 250MB
In genes: 320Mbp 80MB
Coding: 160Mbp 40MB
Protein-coding genes: 30,000-40,000

M.Genitalium (smallest true organism)
580,073bp 145KB (eBook)

E.Coli (bacteria): 4Mbp 1MB (floppy)
Yeast (eukarya): 12Mbp 3MB (MP3 song)
Wheat 17Gbp 4.25GB (DVD)

Input Output
Input

Output1Output2

“External Choice”
The phage 

lambda switch

cf. Hybrid Petri Nets [Matsuno, Doi, Nagasaki, Miyano]
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Gene Composition

a b

Under the assumptions [Kim & Tidor]
1) The solution is well-stirred

(no spatial dependence on concentrations or rates).
2) There is no regulation cross-talk.
3) Control of expression is at transcription level only 

(no RNA-RNA or RNA-protein effects)
4) Transcriptions and translation rates monotonically 

affect mRNA and protein concentrations resp.

Is a shorthand for:

gene
b

mRNA

protein

a

A B

translation

transcription

regulation

degradation

a b a b

Ex: Bistable Switch

a b

c

a b

c

a b

c
Expressed

Repressed

Expressing

Ex: Oscillator
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E.H.Davidson, D.R.McClay, L.Hood. Regulatory gene 
networks and the properties of the developmental 

process. PNAS 100(4):1475–1480, 2003.

Gene Regulatory Networks

NetBuilder
http://strc.herts.ac.uk/bio/maria/NetBuilder/

Or

And

GateAmplify
Sum

DNA
Begin coding region

C-H.Yuh, H.Bolouri, E.H.Davidson. Genomic Cis-Regulatory Logic: Experimental and 
Computational Analysis of a Sea Urchin Gene. Science 279:1896-1902, 1998
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The Programming Model

● Strange facts about genetic networks:
– Not an operator algebra. The output of each gate is fixed and pre-determined; it is 

never a function of the input!

– Not term-rewriting, nor Petri nets. Inhibition is widespread. 

– Not Communicating Sequential Processes. Feedback is widespread: asynchronous 
communication needed to avoid immediate self-deadlocks. Even the simplest gates 
cannot be modeled as a single synchronous automata. 

– Not Message-Passing between genes. Messages themselves have behavior (e.g., they 
stochastically decay and combine), hence messages are processes as well. 

– Not Data-Flow. Any attempt to use data-flow-style modeling seems doomed because 
of widespread loops that lead to deadlocks or unbounded queues. Data-flow tokens do 
not “decay” like proteins.

● How can it possibly work?
– Stochastic broadcasting. The apparently crude idea of broadcasting a whole bunch of 

asynchronous decaying messages to activate a future gate, means there are never any 
“pipeline full” deadlocks, even in presence of abundant feedback loops. 

– Stochastic degradation. Degradation is fundamental for system stability, and at the 
same time can lead to sudden instability and detection of concentration levels.
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Notations for the Gene Machine

● Many of the same techniques as for 
the Protein Machine apply.
– Process Calculi, Petri Nets, Term-

Rewriting Systems…

● But the “programming model” is 
different.
– Asynchronous stochastic control.

– Biologically poorly understood. 

– Network “motifs” are being analyzed.

● Specific techniques:
– Hybrid Petri Nets

● [Matsuno, Doi, Nagasaki, Miyano] 
Gene Regulation

● Genomic Object Net 
www.genomicobject.net

● Gene Regulation Diagrams

● Mixed Gene-Protein Diagrams
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Gene Gates and Circuits

A genetic circuit (engineered in E.Coli)

neg neg

negc b

a

neg(a,b) |
neg(b,c) |
neg(c,a) 

a b

neg

A gene gate neg(a,b) @
?ar; τη; neg(a,b) + 
τε; (tr(b) | neg(a,b)) 

tr(p) @ (!pr; tr(p)) + τδ

r=1.0, ε=0.1, h=0.001, δ=0.001

a b c

A stochastic simulation (in SPiM)

valvalvalval dkdkdkdk = 0.001    (* Decay rate *)= 0.001    (* Decay rate *)= 0.001    (* Decay rate *)= 0.001    (* Decay rate *)

valvalvalval inhinhinhinh = 0.001   (* Inhibition rate *)= 0.001   (* Inhibition rate *)= 0.001   (* Inhibition rate *)= 0.001   (* Inhibition rate *)

valvalvalval cstcstcstcst = 0.1     (* Constitutive rate *)= 0.1     (* Constitutive rate *)= 0.1     (* Constitutive rate *)= 0.1     (* Constitutive rate *)

let let let let tr(p:chantr(p:chantr(p:chantr(p:chan()) = ()) = ()) = ()) = 

do !p; do !p; do !p; do !p; tr(ptr(ptr(ptr(p) or ) or ) or ) or delay@dkdelay@dkdelay@dkdelay@dk

let let let let neg(a:channeg(a:channeg(a:channeg(a:chan(), (), (), (), b:chanb:chanb:chanb:chan()) =()) =()) =()) =

do ?a; do ?a; do ?a; do ?a; delay@inhdelay@inhdelay@inhdelay@inh; ; ; ; neg(a,bneg(a,bneg(a,bneg(a,b))))

or or or or delay@cstdelay@cstdelay@cstdelay@cst; (; (; (; (tr(btr(btr(btr(b) | ) | ) | ) | neg(a,bneg(a,bneg(a,bneg(a,b))))))))

(* The circuit *)(* The circuit *)(* The circuit *)(* The circuit *)

valvalvalval bndbndbndbnd = 1.0= 1.0= 1.0= 1.0 (* Protein binding rate *)(* Protein binding rate *)(* Protein binding rate *)(* Protein binding rate *)

new new new new a@bnd:chana@bnd:chana@bnd:chana@bnd:chan() new () new () new () new b@bnd:chanb@bnd:chanb@bnd:chanb@bnd:chan() new () new () new () new c@bnd:chanc@bnd:chanc@bnd:chanc@bnd:chan()()()()

run (run (run (run (neg(c,aneg(c,aneg(c,aneg(c,a) | ) | ) | ) | neg(a,bneg(a,bneg(a,bneg(a,b) | ) | ) | ) | neg(b,cneg(b,cneg(b,cneg(b,c))))))))

The stochastic-ππππ program
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Guet et al.: D038/lac-

TetR

tet lac

LacI

cI

λλλλcI

gfp

GFP
IPTGaTc

neg(TetR,TetR) | neg(TetR,LacI) | neg(LacI,λcI) | neg(λcI,GFP)

PT PL2PT Pλλλλ
-

aTc -
IPTG -
GFP -

aTc +
IPTG -
GFP +

GFP!

aTc -
IPTG +
GFP -

aTc +
IPTG +
GFP -

r=1.0, ε=0.1, h=1.0, δ=0.001

Combinatorial Synthesis of Genetic Networks, Guet, Elowitz, Hsing, Leibler, 
1996, Science, May 2002, 1466-1470.

Experiment:

aTc 0101

IPTG 0011

GFP 0100

The output of some 
circuits did not seem 
to make any sense…

D038/lac-

A Compositional Approach to the Stochastic Dynamics of Gene Networks, 
Ralf Blossey, Luca Cardelli, Andrew Phillips, TCSB, Springer, to appear.
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3. The Membrane Machine

Molecular transport and 
transformation through 
dynamic compartment 
fusion and fission.

Fusion

Fission

Well, what is all that for?
“Given the complicated pathways that have 
evolved to synthesize them, it seems likely 

that these [modified proteins] have 
important functions, but for the most part 
these functions are not known” [MBC p.609]

Very far from 
the atoms.

Taken from

MCB CD

} The Instruction Set

Voet, Voet & Pratt
Fundamentals of Biochemistry
Wiley 1999. Ch10 Fig 10-22.
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Membrane Fusion
Positive curvature to 
Negative curvature 
transition in 3D

Aggressive fusion 
(virus)

Cooperative fusion
(vesicle)

Taken from
Tamm Laboratory

By unknown mechanisms, 
the exoplasmic leaflets 
of the two membranes 

fuse” [MCB p745]

“Fusion of the two 
membranes immediately 
follows prefusion, but 

precisely how this occurs is 
not known” [MCB p742]

Cell membrane

Virus membrane
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Membrane Fission

Movie by Allison Bruce

Vesicle 
Formation

Cytokinesis 
(Mitosis)

Negative curvature to 
Positive curvature 
transition in 3D

“Nonetheless, the actual 
process whereby a segment of 
phospholipid bilayer is ‘pinched 

off’ to form a pit and 
eventually a new vesicle is still 
not understood” [MCB p.746]
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The Membrane Machine “Instruction Set”

P

Pino

PhagoR R

Arbitrary 
subsystem

Zero case

One case
Exo

Endo
P Q Q

P Q

Q Q

Q Q

Endo:
special
cases

Fusion

Fission

P Q P Q

DripP P

BudP PR R

One case

Arbitrary 
subsystem

Mate

Mito

P Q

Zero case

Fusion

Fission

Mito:
special
cases
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T-Exo

T-Endo

… in 3D

S-Exo

S-Endo

Fusion

Fission

Fission

Fusion

S-Mito

S-Mate

T-Mito

T-Mate

Fission

Fusion

Fusion

Fission
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Mito/Mate by 3 Endo/Exo

PPPP QQQQ PPPP QQQQ

PPPP QQQQPPPP QQQQ

PPPP QQQQ

PPPP QQQQ
PPPP QQQQ

EndoEndoEndoEndo

ExoExoExoExo

EndoEndoEndoEndo

ExoExoExoExo

EndoEndoEndoEndo

ExoExoExoExo
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Notations for the Membrane Machine

● “Snapshot” diagrams
– In biology literature.

● P-Systems
– G.Paun uses ideas from the theory of 

grammars and formal languages to 
model “Membrane Computing” (book 
2002).
http://psystems.disco.unimib.it/.

● BioAmbients
– An extension of BioSPI along 

Ambient Calculus lines (with more 
bio-relevant mobility primitives) to 
model dynamic compartments.

● Brane Calculi
– Computation on the membrane…
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Membrane Algorithms

H.Lodish et al. 
Molecular Cell Biology. 
fourth Edition p.730.

LDL-Cholesterol 
Degradation

Viral Replication

Protein Production 
and Secretion

Voet, Voet & Pratt
Fundamentals of Biochemistry
Wiley 1999. Ch10 Fig 10-22.

Adapted from: B.Alberts et al. 
Molecular Biology of the Cell 

third edition p.279.
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Abstract Machines of Systems Biology
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and Validation
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Reactive Systems

● Modeling biological systems
– Not as continuous systems (often highly nonlinear)

– But as discrete reactive systems; abstract machines where:
●States represent situations

●Event-driven transitions between states represent dynamics

– The adequacy of describing (discrete) complex systems as reactive systems 
has been argued convincingly [Harel]

● Many biological systems exhibit features of reactive systems:
– Discrete transitions between states

– Deep layering of abstractions (“steps” at multiple levels)

– Complexity from combinatorial interaction of simple components

– High degree of concurrency and nondeterminism

– “Emergent behavior” not obvious from part list
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Model Validation: Simulation

● Basic stochastic algorithm: Gillespie
– Exact (i.e. based on physics) stochastic simulation of chemical kinetics.
– Can compute concentrations and reaction times for biochemical networks.

● Stochastic Process Calculi
– BioSPi [Shapiro, Regev, Priami, et. al.]

●Stochastic process calculus based on Gillespie.
– BioAmbients [Regev, Panina, Silverma, Cardelli, Shapiro]

●Extension of BioSpi for membranes.
– Case study: Lymphocytes in Inflamed Blood Vessels [Lecaa, Priami, Quaglia]

●Original analysis of lymphocyte rolling in blood vessels of different diameters.
– Case study: Lambda Switch [Celine Kuttler, IRI Lille]

●Model of phage lambda genome (well-studied system).
– Case study: VICE [U. Pisa]

●Minimal prokaryote genome (180 genes) and metabolism of whole VIrtual CEll, in 
stochastic π-calculus, simulated under stable conditions for 40K transitions.

● Hybrid approaches
– Charon language [UPenn]

●Hybrid systems: continuous differential equations + discrete/stochastic mode 
switching.

– Etc.
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Model Validation: “Program” Analysis

● Causality Analysis
– Biochemical pathways, (“concurrent traces”
such as the one here), are found in biology 
publications, summarizing known facts.  

– This one, however, was automatically 
generated from a program written in BioSpi 
by comparing traces of all possible 
interactions. [Curti, Priami, Degano, Baldari]

– One can play with the program to investigate 
various hypotheses about the pathways.

● Control Flow Analysis
– Flow analysis techniques applied to process 
calculi.

– Overapproximation of behavior used to 
answer questions about what “cannot 
happen”.

– Analysis of positive feedback transcription 
regulation in BioAmbients [Flemming Nielson].

● Probabilistic Abstract Interpretation
– [DiPierro Wicklicky].
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Model Validation: Modelchecking

● Temporal
– Software verification of biomolecular systems (NA pump)

[Ciobanu]

– Analysis of mammalian cell cycle (after Kohn) in CTL.
[Chabrier-Rivier Chiaverini Danos Fages Schachter]

●E.g. is state S1 a necessary checkpoint for reaching state S2?

● Quantitative: Simpathica/xssys
[Antioniotti Park Policriti Ugel Mishra]

– Quantitative temporal logic queries of human Purine 
metabolism model.

● Stochastic: Spring
[Parker Normal Kwiatkowska]

– Designed for stochastic (computer) network analysis
●Discrete and Continuous Markov Processes.
● Process input language.
●Modelchecking of probabilistic queries. 

Eventually(Always (PRPP = 1.7 * PRPP1)
implies
steady_state()
and Eventually(Always(IMP < 2 * IMP1))
and Eventually(Always(hx_pool < 10*hx_pool1)))
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What Reactive Systems Do For Us

We can write things down precisely
– We can modularly describe high structural 

and combinatorial complexity (“do 
programming”).

We can calculate and analyze
– Directly support simulation.
– Support analysis (e.g. control flow, causality, 

nondeterminism).
– Support state exploration (modelchecking).

We can visualize
– Automata-like presentations.
– Petri-Net-like presentations.
– State Charts, Live Sequence Charts [Harel]

●Hierarchical automata.
●Scenario composition.

We can reason
– Suitable equivalences on processes 

induce algebraic laws.
– We can relate different systems (e.g. 

equivalent behaviors).
– We can relate different abstraction 

levels.
– We can use equivalences for state 

minimization (symmetries).

Disclaimers
– Some of these technologies are basically 

ready (medium-scale stochastic simulation and 
analysis, medium-scale nondeterministic and 
stochastic modelchecking).

– Others need to scale up significantly to be 
really useful. This is (has been) the challenge 
for computer scientists.

Many approaches, same basic philosophy, tools being built:
⇒ Proc. Computational Methods in Systems Biology [2003-2005]



Conclusions
“The data are accumulating and 
the computers are humming, 
what we are lacking are the 
words, the grammar and the 
syntax of a new language…”

D. Bray (TIBS 22(9):325-326, 1997)

“The most advanced tools for 
computer process description 
seem to be also the best tools 
for the description of 
biomolecular systems.”

E.Shapiro (Lecture Notes)

Q:

A:
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Papers
BioAmbients

a stochastic calculus with compartments.
Brane Calculi

process calculi with computation “on” the membranes, not inside them.
Bitonal Systems

membrane reactions and their connections to “local” patch reactions.
Abstract Machines of Systems Biology

the abstract machines implemented by biochemical toolkits.

www.luca.demon.co.uk/BioComputing.htm
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Positions
Postdoc at Imperial College London:

Centre for Integrative Systems Biology

Computational Modelling of Biological Processes

Deadline for Applications: 10th February 2006

Applications are invited for the position of a research 
assistant/associate for up to three years to work on the 
application of process-modelling techniques to the signalling
of phagocytosis. This position has been awarded to Dr 
Philippa Gardner and Dr Luca Cardelli (Microsoft Research 
Cambridge), funded by a large BBSRC/EPSRC grant to  
support a new Centre for Systems Biology at Imperial. It 
complements two equivalent positions (one for a biologist, 
one for a mathematician) in  Centre for Molecular 
Microbiology and Infection & Division of Cell and Molecular 
Biology, to investigate the spatio-temporal control of 
phagocytic signalling during uptake of bacteria. We expect 
the three researchers to work closely together.

Applicants should complete an application form, 
downloadable from 
http://www.imperial.ac.uk/employment/academicform.htm. 
Applications will not be accepted unless they are on the 
correct form and clearly marked with the Job Reference 
Number PG Bio 05.  The application form should be 
accompanied by a full CV with names and addresses of 3 
referee and should be sent to: Mrs Nicola Rogers 
Department of Computing Imperial College London South 
Kensington Campus London, SW7 2AZ UK Email: 
n.c.rogers@imperial.ac.uk.

http://www.msr-unitn.unitn.it

Various positions in Trento:


