
On Process Rate 
Semantics
Luca Cardelli
Microsoft Research

UPenn 2007-05-30

http://LucaCardelli namehttp://LucaCardelli.name



Semantics of 
Collective Behavior 

Lu
ca

 C
ar

de
lli

2007-05-30 2



“Micromodels”: Continuous Time Markov Chains

● The underlying semantics of stochastic process algebras.
– Transition graphs with rates (not probabilities) on transitions.

● The molecular-level semantics of chemistry.
– Executable: Gillespie stochastic simulation algorithm.

● But do not give a good sense of “collective” properties.
– Yes it is “mechanistic”.
– Yes it supports classical Markov (e g  steady-state) analysisYes it supports classical Markov (e.g. steady state) analysis.
– Yes one can do simulation.
– Yes one can do some program analysis/modelchecking.
– But somewhat lacking in “predictive power” for collective dynamics  But somewhat lacking in predictive power  for collective dynamics, 

particularly for process algebras.
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Th  l i l i  f ll i  b h i

“Macromodels”: Ordinary Differential Equations

● The classical semantics of collective behavior.
– E.g. kinetic theory of gasses.

N t t d d f  t d i   l b● Not standard for studying process algebras.
– They always ask: “How is you process model related 

to the ODE models in the literature?”

● Going from processes algebras to ODEs directly:
– In principle: just write down the Rate Equation: [Calder, Hillston] 

- Let [S] be the “number of processes in state S” as a function of time. p
- Define for each state S:

[S]• =   (rate of change of the number of processes in state S)
Cumulative rate of transitions from any state S’ to state S, times [S’], 
minus cumulative rate of transitions from S to any state S”  times [S]minus cumulative rate of transitions from S to any state S , times [S].

- I.e. rate = inflow minus outflow.

● Another way: going to ODEs indirectly through chemistry !
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– If we first convert processes to chemical reactions, 

then we can pass to ODEs by standard means!
– This can be done “by hand”.

!



Outline

Continuous‐state Semantics 
(Generalized Mass Action)

=
Continuous

ODE ODE

(Generalized Mass Action)

Continuous
Chemistry

Discrete
Ch i t

Process
Algebra

Nondeterministic 
Semantics

=
Chemistry

CTMC CTMC

D S

Stochastic
Semantics

Discrete‐state Semantics
(Chemical Master Equation)
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Stochastic Processes
& Discrete Chemistry

=ODE ODE

Continuous
Chemistry

Process
Algebra

=

Discrete
Chemistry

CTMC CTMC
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Chemical Reactions
A →r B1 +…+ Bn (n≥0)

A1 + A2 →r B1 +…+ Bn (n≥0)

A + A →r B1 +…+ Bn (n≥0)

Unary Reaction [A]• = -r[A]

Hetero Reaction [Ai]• = -r[A1][A2]

Homeo Reaction [A]• = -2r[A]2

Exponential Decay 

Mass Action Law

Mass Action Law1 n ( ) [ ] [ ]

No other reactions!
Chapter IV: Chemical Kinetics    
[D id A R kh CEE 572 C ]

THE COLLISION THEORY OF 
REACTION RATES

(assuming A≠Bi≠Aj for all i,j) 

[David A. Reckhow , CEE 572 Course]
...  reactions may be either elementary or non-
elementary. Elementary reactions are those reactions 
that occur exactly as they are written, without any 
intermediate steps. These reactions almost always 
involve just one or two reactants. ... Non-elementary 
reactions involve a series of two or more elementary

REACTION RATES
www.chemguide.co.uk
The chances of all this happening if your 
reaction needed a collision involving more 
than 2 particles are remote. All three (or 
more) particles would have to arrive at 
exactly the same point in space at the samereactions involve a series of two or more elementary 

reactions. Many complex environmental reactions are 
non-elementary. In general, reactions with an overall 
reaction order greater than two, or reactions with 
some non-integer reaction order are non-elementary. 

exactly the same point in space at the same 
time, with everything lined up exactly right, 
and having enough energy to react. That's 
not likely to happen very often!

Reactions have 
Trimolecular reactions:

A + B + C →r D
the measured “r” is an (imperfect)

t  f 

Enzymatic reactions:
S   E  r P

the “r” is given by Michaelis-Menten 
( i t d t d t t ) l

rates. Molecules 
do not have rates.
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aggregate of e.g.:
A + B ↔ AB
AB + C → D

(approximated steady-state) laws:
E + S ↔ ES
ES → P + E



Chemical Ground Form (CGF)
E  0   E    A stochastic E ::= 0  ڭ X=M, E    Reagents
M ::= 0  ڭ π;P ⊕ M   Molecules
P ::= 0  ڭ X | P       Solutions

   

A stochastic 
subset of CCS 

(no values, no restriction)

π ::= τ(r) ڭ ?a(r) ڭ !a(r) Interactions (delay, input, output) 
CGF ::= E,P Reagents plus Initial Conditions

⊕ i  t h ti  h i  (   f  h i l ti )

Interacting Automata  
+ dynamic forking

⊕ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = 0|P = P) 

and null molecule (M⊕0 = 0⊕M = M)
Each X in E is a distinct species
Each name a is assigned a fixed rate r: a(r)

(To translate chemistry to processes we 
need a bit more than interacting 
automata: we may have “+” on the right 
of →, that is we may need “|” after π.)

!a Ex: Interacting Automata 
(= finite-control CGFs: they use “|” only in initial conditions):

E m g f (r)

A

?a ?b A = !a;A ⊕ ?b;B
B = !b;B ⊕ ?a;A

(  finite control CGFs  they use |  only in initial conditions)

Automaton in state A

Automaton in state B
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B

!b

B  !b;B ⊕ ?a;A
A|A|B|B Initial 

conditions: 
2A and 2B



From Reagents to Reactions (by example)

Interacting
Automata

Discrete 
Chemistry

initial states initial quantities

A   r A’A’A
@r

=
Continuous

ODE ODE
#A0A | A | ... | A

initial states initial quantities

A A

?a
A A’

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

B B’
!a A+B  r A’+B’@r

=
Chemistry

CTMC CTMC

?a A

A’ A”

!a
A+A  2r A’+A”

@r
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From Reagents to Reactions: Ch(E)
E  0   E    

E.X.i  the i-th   ؝
⊕-summand of the 
molecule M 
associated with 

E ::= 0  ڭ X=M, E    Reagents
M ::= 0  ڭ π;P ⊕ M   Molecules
P ::= 0  ڭ X | P       Solutions w

the X reagent of Eπ ::= τ(r) ڭ ?a(r) ڭ !a(r) Interactions (delay, input, output)
CGF ::= E,P Reagents plus Initial Conditions

Chemical reactions for E,P: (N.B.: <...> are reaction tags to obtain multiplicity of reactions, 
and P is P with all the | changed to +)

Ch(E) Ch(E) :=
{(<X.i>: X →r P) s.t. E.X.i = τ(r);P} ∪
{(<X.i,Y.j>: X + Y →r P + Q) s.t. X≠Y, E.X.i = ?a(r);P, E.Y.j = !a(r);Q} ∪
{( X  X 2 P  Q) E X i  ? P  E X j  ! Q) E}{(<X.i,X.j>: X + X →2r P + Q) s.t. E.X.i = ?a(r);P, E.X.j = !a(r);Q)〉 ∈ E}

Initial conditions for P:
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Ch(P) := P



Entangled vs Detangled

A

!a
a: A+B →r A+B’
a: A+C →r A+C’

b: A+B →r A+B’
c: A+C →r A+C’!b !c

A

?a
B

C

B’

C’
?a

(a@r)

?b
B

C

B’

C’
?c (b@r)

( @ )

A = !a;A
B = ?a;B’
C = ?a;C’
B’ 0

A = !b;A ⊕ !c;A
B = ?b;B’
C = ?c;C’
B’ 0(a@r) (c@r)

Two reactions on Two reactions on two

B’ = 0
C’ = 0

B’ = 0
C’ = 0

Two reactions on 
one channel

Two reactions on two 
separate channels

Detangled processes are in simple 
correspondence with chemistry.
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Same Semantics

B →s A
A+B →r A+A

!a
A

!a !b

AA+A →2r A+B

?a ?a

A

τ@s ?a ?b

A

(a@r)

τ@s

B (a@r) B
(a@r)
(b@r)

A = !a;A ⊕ !b;A ⊕ ?b;B
B = ?a;A ⊕ τ(s);A

A = !a;A ⊕ ?a;B
B = ?a;A ⊕ τ(s);A

B →s A
A+B →r A+A
A+A →r B+B

A
!a

Different reactions, 
b t th  i d  th  ?a ?b

(a@r)
(b@r/2)B

!bτ@s

A ! A ⊕ !b B ⊕ ?b B

but they induce the 
same ODEs
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From Reactions to Reagents (by example)
h l  d  Half rate for 

v1: A+B →k1 C+C
v2: A+C →k2 D
v3: C →k3 E+F

v1(k1) v2(k2) v3(k3) v4(k4/2)

A ? (C|C) ? D

channels and rates 
(1 per reaction)Interaction

Matrix

Half-rate for 
homeo reactions

D
k2v3  C →k3 E F

v4: F+F →k4 B
A ?;(C|C) ?;D
B !;0
C !;0 τ;(E|F)
Din

it
io

ns
r 

sp
ec

ie
s) A C

k1

k2

D
E

F
?;B
!;0

de
fi

(1
 p

er

1: Fill the matrix by columns:

Degradation reaction vi: X →ki Pi

add τ;P to <X v >  

B C

EFk4
k3

add τ;Pi to <X,vii>. 
Hetero reaction vi: X+Y →ki Pi

add ?;Pi to <X,vi> and !;0 to <Y,vi>
Homeo reaction vi: X+X →ki Pi

dd ? P d ! 0 t  X
2: Read the result by rows:

EF4

=ODE ODE

add ?;Pi and !;0 to <X,vi> A = ?v1(k1);(C|C)  ⊕ ?v2(k2);D 
B = !v1(k1);0
C = !v2(k2);0  ⊕ τk3;(E|F)
D = 0 

Continuous
Chemistry

Process
Algebra
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D = 0 
E = 0 
F = ?v4(k4/2);B  ⊕ !v4(k4/2);0 

=

Discrete
Chemistry

g

CTMC CTMC



From Reactions to Reagents: Pi(C)
v: X →r Y1 +…+ Yn + 0 Unary Reaction
v: X1 + X2 →r Y1 +…+ Yn + 0 Binary Reaction

Pi(C)  = {(X = ⊕((v: X →k P)∈C) of (τ(k);P) ⊕
⊕((v: X+Y →k P)∈C and Y≠X) of (?v(k);P) ⊕

From uniquely-labeled (v:) chemical reactions C to a CGF Pi(C):

(( ) ) ( (k) )
⊕((v: Y+X →k P)∈C and Y≠X) of (!v(k);0) ⊕
⊕((v: X+X →k P)∈C) of (?v(k/2);P ⊕ !v(k/2);0) )

s.t. X is a species in C} p }

=ODE ODE

Continuous
Chemistry

Process
Algebra
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Some Syntactic Properties
● C and Ch(Pi(C)) have the same reactions

– (and their reaction labels are in bijection)

● Def: E is detangled if each channel appears once as ?a and once as !a● Def: E is detangled if each channel appears once as ?a and once as !a.

● If C is a system of chemical reactions then Pi(C) is detangled.
– (hence chemical reactions embed into a subclass of CGFs)( )

● Hence for any E, we have that Pi(Ch(E)) is detangled.
- (E and Pi(Ch(E)) are “equivalent” CGFs, but that has to be shown later)

● Def: E,P is automata form if “|” occurs only (other than “|0”) in P.

● Def: Detangle(E) is defined from Pi(Ch(E)) by replacing any occurrence pairs 
?a(r);(X|Y|0) and !a(r);0 with ?a(r);(X|0) and !a(r);(Y|0).
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Discrete-State
Semantics

=ODE ODE

Continuous
Chemistry

Process
Algebra

=

Discrete
Chemistry

CTMC CTMC
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CTMC Semantics
!a !a

A

?a ?b
A

?a ?b BA

r
CTMC
(homogeneous) Continuous Time 
Markov Chain
- directed graph with no self loops

nodes are system states 

!a

B

!b

B

!b

- nodes are system states 
- arcs are transition ratesProbability of holding in state A:

Pr(HA>t) = e-rt

in general, Pr(HA>t) = e-Rt where R is 
the sum of all the exit rates from A

A

B

?a ?b

B

!b

{3A}
{1A,2B}

{3B}
2ra 2ra

{2A,1B}
{3A}{3B}

2rb
2rb

CTMC
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Discrete Semantics of Reactions

=
Continuous

ODE ODE

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

=
Chemistry

CTMC CTMC
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Discrete Semantics of Reagents

=
Continuous

ODE ODE

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

=
Chemistry

CTMC CTMC
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Discrete State Equivalence
● Def: is equivalent CTMC’s (isomorphic graphs with same rates).

● Thm: E Ch(E) =ODE ODE =ODE ODE
( )

● Thm: C Pi(C)
Continuous
Chemistry

Di t

Process
Algebra

Continuous
Chemistry

Di

Process
Algebra

=

Discrete
Chemistry

CTMC CTMC =

Discrete
Chemistry

CTMC CTMC

● For each E there is an E’ E that is detangled (E’ = Pi(Ch(E)))

● For each E in automata form there is an an E’ E that is detangled 
and in automata form (E’ = Detangle(E)).
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Continuous-State
Semantics

=ODE ODE

Continuous
Chemistry

Process
Algebra

=

Discrete
Chemistry

CTMC CTMC
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The “Type System” of Chemistry

A continuous chemical system (C,V) is a system of chemical reactions C y y
plus a vector of initial concentrations VX: M, one for each species X.

The rates of unary reactions have dimension s-1.
The rates of binary reactions have dimension M-1s-1.
(because in both cases the rhs of an ODE should have dimension M·s-1)

For a given volume of solution V, the volumetric factor γ of dimension M-1 is:

γ : M-1 =  NAV where NA:mol-1 and V:L

(because in both cases the rhs of an ODE should have dimension M s ).

Lu
ca

 C
ar

de
lli

2007-05-30 22

γ A A

γ·[X] : 1 =  total number of X molecules (rounded to an integer).
#X / γ : M =  concentration of X molecules



The Gillespie(?) Conversion
V = interaction volume

Discrete 
Chemistry

Continuous 
Chemistry γ = NAV

initial quantities initial concentrations

Think γ = 1
i.e. V = 1/NA

NA = Avogadro’s number

:M‐1

A   r A’ A  →k A’ with k = r

#A0 [A]0 with [A]0 = #A0/γ
initial quantities initial concentrations

:s‐1A A A → A i

A+B  r A’+B’ A+B →k A’+B’ with k = rγ

=
Continuous

ODE ODE

:M‐1s‐1

A+A  r A’+A” A+A →k A’+A” with k = rγ/2

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

:M‐1s‐1
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Contγ and Discγ

=
Continuous

ODE ODE

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra
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=
Chemistry

CTMC CTMC



From Reactions to ODEs
A B C C Stoichiometric 

Write the 
coefficients by 
columns

v1: A+B →k1 C+C
v2: A+C →k2 D
v3: C →k3 E+F

F F B

Stoichiometric 
Matrix

D

=
Continuous
Chemistry

P

ODE ODE

N v1 v2 v3 v4
A -1 -1
B -1 1

reactions

es

v4: F+F →k4 B

A

D

C
k1

k2
Discrete
Chemistry

Process
Algebra

Quantity 
changes B 1 1

C 2 -1 -1
D 1
E 1
F 1 2

sp
ec

ie

B C
k3

=CTMC CTMCStoichiometric
matrix

Rate laws

g

F 1 -2

[A]• = -l1 - l2 Read the concentration changes 

X[X]• = N⋅l

Set a rate law for each reaction 
(Degradation/Hetero/Homeo)

EFk4
k3

[ ] 1 2

[B]• = -l1 + l4
[C]• = 2l1 - l2 - l3
[D]• = l2

Read the concentration changes 
from the rows

X: chemical species
[-]: quantity of molecules
l: rate laws
k: kinetic parameters

l
l1 k1[A][B]
l2 k2[A][C]

(Degradation/Hetero/Homeo)

E.g. [A]• = 
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[ ] 2

[E]• = l3
[F]• = l3 - 2l4

k: kinetic parameters
N: stoichiometric matrix

l2 k2[A][C]
l3 k3[C]
l4 k4[F]2

E.g. [A]  
-k1[A][B] - k2[A][C]



From Processes to ODEs via Chemistry!
!c

directive sample 0.03 1000
directive plot A(); B(); C()

new a@1.0:chan new b@1.0:chan new c@1.0:chan
let A() = do !a;A() or ?b; B()
and B() = do !b;B() or ?c; C()

d C()  d  ! C()  ?  A()
?c

?a
C

@1.0

@1.0

and C() = do !c;C() or ?a; A()

run (900 of A() | 500 of B() | 100 of C())
A B

!a !b?b
@1.0

900xA, 500xB, 100xC

A = !a(s);A ⊕ ?b(s);B
B = !b(s);B ⊕ ?c(s);C

interval/step [0:0.001:20.0]
(A) dx1/dt = - x1*x2 + x3*x1 0.9
(B) dx2/dt = - x2*x3 + x1*x2 0.5
(C) dx3/dt = - x3*x1 + x2*x3 0.1

Matlab
continuous_sys_generator

(s) (s)

C = !c(s);C ⊕ ?a(s);A

A+B →s B+B
B+C →s C+C

=
Continuous

ODE ODE

B+C →s C+C
C+A →s A+A

[A]• = -s[A][B]+s[C][A]

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra
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[B]• = -s[B][C]+s[A][B]
[C]• = -s[C][A]+s[B][C] =

Chemistry

CTMC CTMC



From Processes to ODEs via Chemistry!
!a !b =ODE ODEτ: B →t A

a: A+B →r A+A
b: A+A →2r A+B
(discrete reactions)

!a !b

A

=
Continuous
Chemistry

Process

ODE ODE

[A]• = t[B] + rγ[A][B] - rγ[A]2
?a ?bτ@t

a@r
b@rB

B →s A
A+B →rγ A+A
A+A →rγ A+B
(continuous reactions)

Discrete
Chemistry

Algebra

CTMC CTMC

[A]  t[B]  rγ[A][B] rγ[A]
[B]• = -t[B] –rγ[A][B] + rγ[A]2

2007-05-30 27
Different chemistry 
but same ODEs, hence 
equivalent automata

2007-05-30 27

=CTMC CTMC

τ: B →s A
a: A+B →r A+A
b: A+A →r B+B
(discrete reactions)

?a ?b

A

!b

!a

[A]• = t[B] + rγ[A][B] - rγ[A]2
?a ?bτ@s

a@r
b@r/2B

!b
B →s A
A+B →rγ A+A
A+A →rγ /2 B+B
(continuous reactions)

[B]• = -t[B] –rγ[A][B] + rγ[A]2
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Processes Rate Equation
ODE ODE

[X]• = (Σ(Y∈E) AccrE(Y,X)⋅[Y]) - DeplE(X)⋅[X] for all X∈E

=
Continuous
Chemistry

Process

ODE ODEProcess Rate Equation for Reagents E

Discrete
Chemistry

Process
Algebra

DeplE(X) = 
Σ(i: E.X.i=τ(r);P) r + 
Σ(i: E.X.i=?a(r);P) rγ⋅OutsOnE(a) + 

=CTMC CTMC
( (r) ) γ E( )

Σ(i: E.X.i=!a(r);P) rγ⋅InsOnE(a)

AccrE(Y, X)  =
Σ(i: E.Y.i=τ(r);P) #X(P)⋅r +Σ(i  E.Y.i τ(r);P) #X(P) r 
Σ(i: E.Y.i=?a(r);P) #X(P)⋅rγ⋅OutsOnE(a) +
Σ(i: E.Y.i=!a(r);P) #X(P)⋅rγ⋅InsOnE(a)

InsOn (a) = Σ(Y∈E) #{Y i | E Y i=?a ;P}⋅[Y]

X = τ(r);0 [X]• = -r[X]
InsOnE(a) = Σ(Y∈E) #{Y.i | E.Y.i=?a(r);P}⋅[Y]
OutsOnE(a) = Σ(Y∈E) #{Y.i | E.Y.i=!a(r);P}⋅[Y] X = ?a(r);0 [X]• = -rγ[X][Y]

Y = !a(r);0 [Y]• = -rγ[X][Y]

   2
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X = ?a(r);0 [X]• = -2rγ[X]2

⊕ !a(r);0



Continuous State Equivalence
● Def: ≈ is equivalence of polynomials over the field of reals.

● Thm: E ≈ Cont(Ch(E)) =ODE ODE =ODE ODE
( ( ))

● Thm: Cont(C) ≈ Pi(C)
Continuous
Chemistry

Di t

Process
Algebra

Continuous
Chemistry

Di

Process
Algebra

=

Discrete
Chemistry

CTMC CTMC =

Discrete
Chemistry

CTMC CTMC

● For each E there is an E’ ≈ E that is detangled (E’ = Pi(Ch(E)))

● For each E in automata form there is an an E’ ≈ E that is detangled and 
in automata form (E’ = Detangle(E)).
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Basic Examples: Unary Reactions

A →k 0

[A]• = ‐k[A] [A]• = ‐r[A]

k = r
[A]0=1/γ

A →r 0
A

A = τ(r);0
A

A

A 0

r

A 0

r

Unary Reaction
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Basic Examples: Binary Reactions

A+B →k 0
[A] [B] 1/

[A]•=[B]•= ‐k[A][B] [A]•=[B]•= ‐rγ[A][B]

k = rγ A+A →2k 0
[A] 2/

[A]• = ‐4k[A]2 [A]• = ‐2rγ[A]2

k = rγ/2 
[A]0=[B]0=1/γ

A+B →r 0
A+B

A = ?a(r);0, B = !a(r);0
A|B

[A]0=2/γ

A+A →2r 0
A+A

A = ?a(r);0 ⊕ !a(r);0
A|A

A+B 0

r

A|B 0

r

A+A 0

2r

0

2r

A|A

Hetero Reaction Homeo Reaction
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Model Compactness
=ODE ODE

Continuous
Chemistry

Process
Algebra

=

Discrete
Chemistry

Algebra

CTMC CTMC
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Entangled vs detangled

?a00
?

!a00
!

?a

?a

X1

X0

!a

Y1

Y0

!a X1

X0

Y1

Y0

?a01
?a02
?a20
?a21
?a

!a01
!a02
!a20
!a21
!a1 1

?a

X2 Y2

!a
1 1

X2 Y2

?a10
?a11
?a12

?a22
!a10
!a11
!a12

!a22

Detangle(E3)E3
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n2 Scaling Problems
E has 2n variables (nodes) and 2n terms (arcs) The stoichiometric matrix has size 2n⋅n2 = 2n3

Ch(E3)

- En has 2n variables (nodes) and 2n terms (arcs). - The stoichiometric matrix has size 2n⋅n2 = 2n3.
- Ch(En)  has 2n species and n2 reactions. - The ODEs have 2n variables and 2n(n+n) = 4n2 terms

(number of variables times number of accretions plus depletions when sums are distributed)

E3 StoichiometricMatrix(Ch(E3))( 3)

a00: X0+Y0 →r X1+Y1

a01: X0+Y1 →r X1+Y2

a02: X0+Y2 →r X1+Y0

3

X0 = ?a(r);X1

X1 = ?a(r);X2

X2 = ?a(r);X0

a00 a01 a02 a10 a11 a12 a20 a21 a22

X0 -1 -1 -1 +1 +1 +1

( ( 3))

a10: X1+Y0 →r X2+Y1

a11: X1+Y1 →r X2+Y2

a12: X1+Y2 →r X2+Y0

a20: X2+Y0 →r X0+Y1

Y0 = !a(r);Y1

Y1 = !a(r);Y2

Y2 = !a(r);Y0

X1 +1 +1 +1 -1 -1 -1
X2 +1 +1 +1 -1 -1 -1
Y0 -1 +1 -1 +1 -1 +1
Y 1 1 1 1 1 120 2 0 0 1

a21: X2+Y1 →r X0+Y2

a22: X2+Y2 →r X0+Y0

Y1 +1 -1 +1 -1 +1 -1
Y2 +1 -1 +1 -1 +1 -1

ODE(E3)ODE(E3)

[X0]• = -r[X0][Y0] - r[X0][Y1] - r[X0][Y2] + r[X2][Y0] + r[X2][Y1] + r[X2][Y2]
[X1]• = -r[X1][Y0] - r[X1][Y1] - r[X1][Y2] + r[X0][Y0] + r[X0][Y1] + r[X0][Y2]
[X2]• = -r[X21][Y0] - r[X2][Y1] - r[X2][Y2] + r[X1][Y0] + r[X1][Y1] + r[X1][Y2] =?!
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[Y0]• = -r[X0][Y0] - r[X1][Y0] - r[X2][Y0] + r[X0][Y2] + r[X1][Y2] + r[X2][Y2]
[Y1]• = -r[X0][Y1] - r[X1][Y1] - r[X2][Y1] + r[X0][Y0] + r[X1][Y0] + r[X2][Y0]
[Y2]• = -r[X0][Y2] - r[X1][Y2] - r[X2][Y2] + r[X0][Y1] + r[X1][Y1] + r[X2][Y1]

?!



Laws by ODEs
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Choice Law by ODEs
;B ⊕ ;B  ;B

A A

B

B
B

τλ

τ

τλ+μ

τλ;B ⊕ τμ;B  = τλ+μ;B

A = τλ;B ⊕ τ ;B A = τλ+μ;B

Bτμ

A = τλ;B ⊕ τμ;B λ+μ;

A λ+μ BA →λ+μ BA →λ B
A →μ B

[A]• = -λ[A] - μ[A]
[B]• = λ[A] + μ[A] 

[A]• = -(λ+μ)[A]
[B]• = (λ+μ)[A] =
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Idle Delay Law by ODEs
A  ;A ⊕ ;B       A  ;B

A

τλ

B A B

A = τλ;A ⊕ τμ;B       = A = τμ;B

A  A ⊕ B A  B

A
τμ

B A
τμ

B

A = τλ;A ⊕ τμ;B A = τμ;B

A →μ BA →λ A
A →μ B

useless→

[A]• = -μ[A]
[B]• = μ[A] 

[A]• = -μ[A]
[B]• = μ[A] 

=
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[B] = μ[A] [B] = μ[A] 



Stochastic Interleaving
B | D    (B | D) ( B | D)

Hermanns: Interactive 
Markov Chains. Sec 4.1.2  

directive sample 4.0 10000

τλ;B | τμ;D  =  τλ;(B | τμ;D) ⊕ τμ;(τλ;B | D)

Ex: λ=1 0  μ=2 0 p
directive plot A(); B(); C(); D()

let A() = delay@1.0; B()
and B() = ()

let C() = delay@2.0; D()
and D()  ()

BD

A

@1.0
A1 B

[A1]0=1000
@2 0

Ex: λ=1.0, μ=2.0

and D() = ()

run 1000 of (A() | C())

directive sample 4 0 10000

A1C1C1 D
[C1]0=1000

@2.0

directive sample 4.0 10000
directive plot 

?YA; B(); ?YC; D(); Y(); A(); C()
new YA@1.0:chan new YC@1.0:chan

let A() = do delay@1.0; B() or ?YA

and B() = ()

BD@1.0

Y

B

C2

@1.0

let C() = do delay@2.0; D() or ?YC

and D() = ()

let Y() = 
do delay@1.0; (B() | C()) 
or delay@2 0; (A() | D())

Y+A2Y+C2@2.0A2

D

[Y]0=1000
@2.0
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or delay@2.0; (A() | D())
or ?YA or ?YC

run 1000 of Y()Amazingly, the B’s and the D’s from the two 
branches sum up to exponential distributions



Stochastic Interleaving Law by ODEs
;B | ;D  ;(B | ;D) ⊕ ;( ;B | D) Want to show that B and D τλ;B | τμ;D  = τλ;(B | τμ;D) ⊕ τμ;(τλ;B | D)

A1 = τλ;B
C1 = τμ;D

Y = τλ;(B | C2) ⊕ τμ;(A2 | D)
C2 = τμ;D

Want to show that B and D 
on both sides have the 
“same behavior” (equal 
quantities of B and D 
produced at all times)μ

n×A1 | n×C1

μ

A2 = τλ;B
n×Y

Y →λ B + C2
Y →μ A2 + D

A1 →λ B
C1 →μ D

[Y]• = -λ[Y]-μ[Y]
[A2]• = μ[Y]-λ[A2]Y → A2  D

C2 →μ D
A2 →λ B
[Y]0 = n/γ

C1 → D
[A1]0 = n/γ
[C1]0 = n/γ

[A2]  μ[Y] λ[A2]
[B]• = λ[Y]+λ[A2]
[C2]• = λ[Y]-μ[C2]
[D]• = μ[Y]+μ[C2]

[A1]• = -λ[A1] [Y+A ]• = [Y]•+[A ]•[Y+A2]• = -λ[Y+A2][A1] = λ[A1]
[B]• = λ[A1] 
[C1]• = -μ[C1] 
[D]• = μ[C1]

[Y+A2] = [Y] +[A2]
= -λ[Y]-μ[Y]+μ[Y]-λ[A2]
= -λ[Y]-λ[A2]
= -λ[Y+A2]     [Y+A2] decays exponentially!

[Y+A2] = λ[Y+A2]
[B]• = λ[Y+A2]
[Y+C2]• = -μ[Y+C2]
[D]• = μ[Y+C2]

=?
[B] and [D] have equal time evolutions on the two sides provided that [A ]=[Y+A ] and [C ]=[Y+C ]  [B] and [D] have equal time evolutions on the two sides provided that [A1]=[Y+A2] and [C1]=[Y+C2]. 
Moreover [A1]0=[C1]0=[Y]0=n/γ, and the initial conditions of the right hand system specify that [A2]0=[C2]0=0 
(since only Y is present), hence [A1]0=[Y+A2]0 and [C1]0=[Y+C2]0. Similarly [B]0=[D]0=0. Therefore the final ODEs 
have the same initial conditions for all variables, and hence have the same time evolution.

So  for example  if we run a stochastic simulation of the left hand side with n=1000 
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So, for example, if we run a stochastic simulation of the left hand side with n=1000 
and with initially 1000×A1 and 1000×C1, we obtain the same curves for B and D than 
a stochastic simulation of the right hand side with initially 1000×Y.



Parametric Processes
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Chemical Parametric Form (CPF)
E  ( ) M   ( ) ME ::= X1(p1)=M1, …, Xn(pn)=Mn Reagents (n ≥ 0)

M ::= π1;P1 ⊕ … ⊕ πn;Pn Molecules (n ≥ 0)

P ::= X1(p1) |  | X (p )      Solutions (n ≥ 0)P ::  X1(p1) | … | Xn(pn)      Solutions (n ≥ 0)

π ::= τr ?n(p)   !n(p)              Interactions

CPF::= E,P with initial conditions

⊕ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = 0|P = P) 

and null molecule (M⊕0 = 0⊕M = M) (τ0;P = 0)  
Xi are distinct in E, p are vectors of namesNot bounded-state systems. p
p are vectors of distinct names when in binding position
Each free name n in E is assigned a fixed rate r: 

written either n(r), or ρCPF(n)=r.

N u y m .
Not finite-control systems.
But still finite-species systems.

A translation from CPF to CGF exists 
(expanding all possible instantiation of parameters from the initial conditions)

A  i t l t l ti  l ith  i t
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An incremental translation algorithm exists
(expanding on demand from initial conditions)



A fine stochastic oscillator over 

And Yet It Moves
The Repressilator A fine stochastic oscillator over 

a wide range of parameters.
Negx z
y

The Repressilator
Neg(a,b) !b

?a

Inh(a,b)
τ(η)

Tr(b)
τ(δ)

τ(ε)

directive sample 50000.0 1000
directive plot !a; !b; !c

val dk = 0.001    (* Decay rate *)
val inh = 0.001   (* Inhibition rate *)
val cst = 0.1     (* Constitutive rate *)

l t t ( h ())  d  !  t ( )  d l @dk

SPiM

|
[Neg/x,y]• = -r[Tr/x][Neg/x,y] + η[Inh/x,y]
[Neg/y z]• = r[Tr/y][Neg/y z] + [Inh/y z]

Neg Neg
y

Parametric representation

( , )

let tr(p:chan()) = do !p; tr(p) or delay@dk

let neg(a:chan(), b:chan()) =
do ?a; delay@inh; neg(a,b)
or delay@cst; (tr(b) | neg(a,b))

val bnd = 1.0 (* Protein binding rate *)
new a@bnd:chan() new b@bnd:chan() new 
c@bnd:chan()
run (neg(c,a) | neg(a,b) | neg(b,c))

Neg(a,b) = ?a; Inh(a,b) ⊕ τε; (Tr(b) | Neg(a,b))
Inh(a,b) = τη; Neg(a,b)
Tr(b) = !b; Tr(b) ⊕ τγ; 0
Neg(x(r),y(r)) | Neg(y(r),z(r)) | Neg(z(r),x(r))

[Neg/y,z]• = -r[Tr/y][Neg/y,z] + η[Inh/y,z]
[Neg/z,x]• = -r[Tr/z][Neg/z,x] + η[Inh/z,x]
[Inh/x,y]• = r[Tr/x][Neg/x,y] - η[Inh/x,y]
[Inh/y,z]• = r[Tr/y][Neg/y,z] - η[Inh/y,z]
[Inh/z,x]• = r[Tr/z][Neg/z,x] - η[Inh/z,x]
[Tr/x]• = ε[Neg/z,x] - γ[Tr/x]

Neg/x,y →ε Tr/y + Neg/x,y 
Neg/y,z →ε Tr/z + Neg/y,z 
Neg/z,x →ε Tr/x + Neg/z,x 
T /x  N /x  r T /x  Inh/x  

[Tr/x]  ε[Neg/z,x] γ[Tr/x]
[Tr/y]• = ε[Neg/x,y] - γ[Tr/y]
[Tr/z]• = ε[Neg/y,z] - γ[Tr/z]

simplifying (N is the quantity 
of each of the 3 gates) Analytically not Tr/x + Neg/x,y →r Tr/x + Inh/x,y 

Tr/y + Neg/y,z →r Tr/y + Inh/y,z 
Tr/z + Neg/z,x →r Tr/z + Inh/z,x 
Inh/x,y →η Neg/x,y
Inh/y,z →η Neg/y,z
Inh/z,x →η Neg/z,x

[Neg/x,y]• = ηN – (η+r[Tr/x])[Neg/x,y]
[Neg/y,z]• = ηN – (η+r[Tr/y])[Neg/y,z]
[Neg/z,x]• = ηN – (η+r[Tr/z])[Neg/z,x]
[Tr/x]• = ε[Neg/z x] - γ[Tr/x]

of each of the 3 gates)

Matlab

n y y n
an oscillator!
Blossey-Cardelli-Phillips.
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Inh/z,x → Neg/z,x
Tr/x →γ 0
Tr/y →γ 0
Tr/z →γ 0
Neg/x,y + Neg/y,z + Neg/z,x

[Tr/x] = ε[Neg/z,x] γ[Tr/x]
[Tr/y]• = ε[Neg/x,y] - γ[Tr/y]
[Tr/z]• = ε[Neg/y,z] - γ[Tr/z]

interval/step [0:10:20000] N=1, r=1.0, ε=0.1, η=0.001, γ=0.001
(Neg/x,y) dx1/dt = 0.001 – (0.001 + x4)*x1 1.0
(Neg/x,y) dx2/dt = 0.001 - (0.001 + x5)*x2 1.0
(Neg/x,y) dx3/dt = 0.001 - (0.001 + x6)*x3 1.0
(Tr/x) dx4/dt = 0.1*x3 - 0.001*x4 100.0
(Tr/y) dx5/dt = 0.1*x1 - 0.001*x5 0
(Tr/z) dx6/dt = 0.1*x2 - 0.001*x6 0

Matlab
continuous_sys_generator



Conclusions
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Quantitative Process Semantics

Continuous‐state Semantics 
(Generalized Mass Action)

[X]• = (Σ(Y∈E) AccrE(Y,X)⋅[Y]) - DeplE(X)⋅[X] for all X∈E

Process Rate Equation

=
Continuous
Chemistry

Process

ODE ODE

Nondeterministic

Accretion Depletion

Discrete
Chemistry

Process
Algebra

Nondeterministic 
Semantics

Stochastic
S ti

Defined over the 
syntax of processes

=CTMC CTMC

Discrete‐state Semantics
(Chemical Master Equation)

Semantics

∂pr(p,t)/∂t   =   Σι∈ℑ aι(p-vι)⋅pr(p-vι,t) - aι(p)⋅pr(p,t) for all p∈States(E)

Interactions Propensity

( q )

Process Master Equation
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Some Consequences
● Process algebras are faithful to chemical semantics.

– And hence can be used for biochemical modeling
Pi(Ch(E)) E Pi(Ch(E))  ≈ E
Ch(Pi(C)) C Cont(Ch(Pi(C)))  ≈ Cont(C)

– (N.B. although CTMC graphs were sufficient for our purposes, there is still the issue of when two CTMC graphs 
are stochastically equivalent. The “true” stochastic semantics is given by the Chapman-Kolmogorov equation for 
Markov processes, a.k.a. the Chemical Master Equation. Such equation can be extracted directly from process Markov processes, a.k.a. the Chemical Master Equation. Such equation can be extracted directly from process 
algebra as well, but it is notoriously difficult to use.)

● Process algebras lead to more compact models (representations), 
hi h i  ddi i   i i lwhich in addition are compositional.
– This is relevant to the current efforts in “scaling up” biological modeling.

● We also obtain a bulk (ODE) semantics for process algebras
– Opens up the possibility of studying “bulk laws” of processes; classical 

analytical tools can be used.
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