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“"Micromodels”: Continuous Time Markov Chains

e The underlying semantics of stochastic process algebras.
- Transition graphs with rates (ot probabilities) on transitions.

e The molecular-level semantics of chemistry.
- Executable: Gillespie stochastic simulation algorithm.

e But do not give a good sense of "collective” properties.
Yes it is "mechanistic”.

Yes it supports classical Markov (e.g. steady-state) analysis.
Yes one can do simulation.

Yes one can do some program analysis/modelchecking.

But somewhat lacking in "predictive power" for collective dynamics,
particularly for process algebras.



"Macromodels”: Ordinary Differential Equations

e The classical semantics of collective behavior.
- E.g. kinetic theory of gasses.

e Not standard for studying process algebras.

- They always ask: "How is you process model related
to the ODE models in the literature?”

e Going from processes algebras to ODEs directly:
- Inprinciple. just write down the Rate Equation: [Calder, Hillston]
- Let [S] be the "number of processes in state S" as a function of time.

- Define for each state S:

[S]° = (rate of change of the number of processes in state S)
Cumulative rate of fransitions from any state S' to state S, times [S'],
minus cumulative rate of transitions from S to any state S", times [S].

- T.e. rate = inflow minus outflow.

e Another way: going to ODEs indirectly through chemis’rry@

- If we first convert processes to chemical reactions,
then we can pass to ODEs by standard means!

- This can be done "by hand".
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Chemical Reactions

A —" By +.+ B, m0) UnaryReaction [A]* = -r[A] Exponential Decay
A+ A, > By +.+ B, m0) HeteroReaction [A]'=-r[AJ[A,]  Mass Action Law
A+A oF 31 +..t Bn (n20) Homeo Reaction [A]*=-2r[A]? Mass Action Law

No other reactions!

(assuming AzB;zA; for all ij)

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 1

The chemical Langevin equation

Daniel T. Gillespie®
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely frimolecular reactions do not physically occur
in dilute fluids with any appreciable frequency. Apparently
trimolecular reactions in a fluid are usually the combined
result of two bimolecular reactions and one monomolecular
reaction, and involve an additional short-lived species.

Chapter 1V: Chemical Kinetics THE COLLISION THEORY OF
[David A. Reckhow , CEE 572 Course] REACTION RATES

.. reactions may be either elementary or non- www.chemguide.co.uk

elementary. Elementary reactions are those reactions || The chances of all this happening if your
that occur exactly as they are written, without any reaction needed a collision involving more
intermediate steps. These reactions almost always than 2 particles are remote. All three (or
involve just one or two reactants. ... Non-elementary | more) particles would have to arrive at

reactions involve a series of two or more elementary || exactly the same point in space at the same
reactions. Many complex environmental reactions arefl time, with everything lined up exactly right,
non-elementary. In general, reactions with an overall | and having enough energy to react. That's
reaction order greater than two, or reactions with not likely to happen very often!

some non-integer reaction order are non-elementary.

Trimolecular reactions:
A+B+C->rD

the measured "r" is an (imperfect)
aggregate of e.g.:

A+Bo AB
AB+C > D

00 0000 0000000000000 000000

000000000000 00000000000000000000000000000000000

000 0000000000000 00000000000000000000000000000000

Enzymatic reactions:
S EyP
the “r" is given by Michaelis-Menten:
(approximated steady-state) laws:
E+S<ES
ES—>P+E

000000000000 0000000000000000000000000000000000




Chemical 6round Form (CGF)

Bl GO e A Reagents
M:=0 : t,POEM Molecules
g T 1 Solutions

| | I | Interacting Automata
el 3 ’L'(r.) ' ?Cl(r.) t !Cl(r.) Interactions (delay, InpUT, OUTPUT) + dynamic forking
el il Reagents plus Initial Conditions

(Tot late chemistry + ceses we ® is stochastic choice (vs. + for chemical reactions)
© Transiate chemisiry To proc w 0 is the null solution (P|0 = O|P = P)

need a bit more than interacting and null molecule (M@0 = 0BM = M)
automata: we may have "+" on the right Each X in E is a distinct species

of =, that is we may need *|" after n.) Each name a is assigned a fixed rate r: a,

|
Ex: Interacting Automata

0 (= finite-control CGFs: they use "|" only in initial conditions):

—— Automaton in state A
?a?b A=la,A®?bB
B - !b)B D ?GIA Automaton in state B

G AlAlBIB | Initial
' conditions:
Ib

2A and 2B



From Reagents to Reactions (by example)

Interacting _ Discrete
Automata Chemistry

initial states initial quantities
ATAL.TA #Ag

ODE — ODE
1 A
@r ’
@- ------- e A -t A Continuous
Chemistry
1 T Process
: Algebra
Discrete
o ar A+B - A+B’ Cheri“’try
! v
@ CTMC| = |CIMC




From Reagents to Reactions: Ch(E)

{1 D 1 = G R Reagents , ,
EX.i & thei-th
M:=0 : PO M Molecules ®-summand of the
! . molecule M
Pu=0 : X | P Solutions associated with
M= T4y | 204 i lagy  Interactions (delay, input, output) the X reagent of E
el il Reagents plus Initial Conditions

Chemical reactions for E,P:  (N.B.: <.> are reaction tags to obtain multiplicity of reactions,
and P is P with all the | changed to +)

DI (L e
{(Xxix X - P) s.f. EX.i = 140,P} U
{(Xiyp: X+Y >"P+ Q) s.7. X#Y, EX.i=?a,P, EVY.j=la,.,Q}u
{(<X,i,X,j>: X+ X _)Zr' P+ Q) s T EXI = ?C((r.);P, EXJ = !Cl(r.);Q» v E}

Initial conditions for P:

Ch(P):= P



Entangled vs Detangled

8' a: A+B - A+B’ b: A+B > A+B’
a

a: A+C -7 A+C’ b @ © e AHC 5T AHC
?a ?b
e @ A=la;A A=bA® IGA
B =7?a;B’ B ="7b,B’
M C=?a;C’ M (b@r)  c-2qC
(a@r) g g (c@r) B'=0

C=0 C=0

Two reactions on Two reactions on two
one channel separate channels




Same Semantics

B—osA
A+B 5> A+A
/ A+A —?" A+B \
¥,
A= ‘a,A(-B 7a,B “’o A=1a:A® |bA@ 7bB
B ?a;A o T(S),.A o“ =.4q, -0, ‘D,
%, B =7a;A ® 1/,A
B> A -,
/ A+B 5T A+A RN
A+A - B+B < Different reactions,
but they induce the
same ODEs
(a@r)
(b@r/2)

A=1!a;A® 'b;B @ ?b;B
B=?5A® 1, A



From Reactions to Reagents (by example)

channels and rates AU

vy A+B ok, C+C Interaction (1 oer r-eqc'l'ion) homeo reactions
v A+C —k, D Matrix D
Vik) Vewka) V3k3) Vawkar2)
V3: C —)k3 E+F A —)(CIC) QD I k2
ve F+F —k, B 2! ‘§ B -0 A C
oy k
8 C L0 w(ElF) L
/ £ 0 D
S
: Fill the matrix by columns: T B C
~ ?.B
Degradation reaction v;: X —k P, F -0 L\ A k3
add t;P; to <X, v;>. 4 F E
Hetero reaction v;: X+Y —k P, 1
add ?;P; to <X, v> and |;0 to <Y v
Homeo reaction v;: X+X —k P; 2: Read the result by rows: ODE = OADE
add ?;P; and ;0 o <X,vp> 1
A= Vi) (CIC) @ Pvp(eyD Continuous
B = vy 0 Chemistry
C = Wou0:0 @ 71y3:(EIF) l Process
D - 02(k2) « T Algebra
Discrete
E=0 Chemistry
F= ?VakarayB @ WVaga/2)0 ‘ v
CTMC = CTMC




From Reactions to Reagents: Pi(C)

vi X - Y;+.+Y,+0 Unary Reaction
Vi Xi+ X, o Yi+.+Y, +0 Binary Reaction

From uniquely-labeled (v:) chemical reactions C to a CGF Pi(C):

Pi(C) = {(X= &((vi X >KP)eC) of (t(:P) ®
@((v: X+Y =k P)eC and YzX) of (?v:P) ®
@((v: Y+X =k P)eC and YzX) of (Iv(y.0) ®
A((v: X+X =k P)eC) of (Pvyy2y:P @ Vys20) )
s.1. X is a species in C}

ODE = ODE
1 A
Continuous
Chemistry
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Discrete
Chemistry
L .

CTMC

CTMC




Some Syntactic Properties

C and Ch(Pi(C)) have the same reactions
- (and their reaction labels are in bijection)

Def: E is detangled if each channel appears once as ?a and once as la.

If Cis asystem of chemical reactions then Pi(C) is detangled.
- (hence chemical reactions embed into a subclass of CGFs)

Hence for any E, we have that Pi(Ch(E)) is detangled.
- (E and Pi(Ch(E)) are “equivalent” CGFs, but that has to be shown later)
Def: E P is automata form if *|" occurs only (other than “|0") in P.

Def: Detangle(E) is defined from Pi(Ch(E)) by replacing any occurrence pairs
‘)G(r),(X|Y|O) and |G(r),o with 900.),()('0) and |G(r),(Y|O)

If E is in automata form then Detangle(E) is (detangled and) in automata form
- (but Pi(Ch(E)) may not be)
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CTMC Semantics

"
A

P
&—>®

A B

Probability of holding in state A:

Pr(Hot) = et

CTMC

(homogeneous) Continuous Time
Markov Chain

- directed graph with no self loops
- nodes are system states

- arcs are transition rates

e i Ib in general, Pr(H>t) = e®f where R is
-7 the sum of all the exit rates from A
{1a2B}2r,
{3B} —>® {3A}
2ry, 2r, {2A,1B}

CTMC




Discrete Semantics of Reactions

ODE = ODE
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Discrete Semantics of Reagents

ODE = ODE
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Discrete State Equivalence

Def: 22 is equivalent CTMC's (isomorphic graphs with same rates).

ODE = ODE ODE = ODE
Thm: E 22 Ch(E) 1 1
Continuous Continuous I
) Chemistry Chemistry
Thm: C 22 Pi(C) 1 T Process
Algebra
Discrete
Chemistry l
CIMC| = |[CIMC CIMC | = CTMC

For each E there is an E' 22 E that is detangled (E' = Pi(Ch(E)))

For each E in automata form there is an an E' 22 E that is detangled
and in automata form (E' = Detangle(E)).
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The "Type System” of Chemistry

—
The International System of Units (5I) defines the following physical units, with related derived units

and constants; note that amount of substance is a base unit in 51, like length and time:

mol  (a base unit) mole, unit of amount of substance

m (a base unit) meter, unit of length

5 (a base unit) second, unit of time

L=0.001-m> liter (volume)

M =mol L? molarity (concentration of substance)

Ny ol = 60225105 Avogadro’'s number (number of particles per amount of substance)

For a substance X:mol, we write [X]:M for the concentration of X, and [X]':M-s'j for the time derivative

of the concentration.

A continuous chemical system (C,V) is a system of chemical reactions C
plus a vector of initial concentrations Vy: M, one for each species X.

The rates of unary reactions have dimension s

The rates of binary reactions have dimension M-1s-1,
(because in both cases the rhs of an ODE should have dimension M-s1).

For a given volume of solution V, the volumetric factor y of dimension M1 is:
yi M1 = NV where N,:moltand V:L

v[X]:1= total number of X molecules (rounded to an integer).
#X /v: M= concentration of X molecules



Discrete
Chemistry

initial quantities

A el A’

A+B —r A'+B’

A+A -t A'+A”

The Gillespie(?) Conversion

Continuous
Chemistry

y=N,V M1

initial concentrations

[Alo

A >k A

A+B 5k A’+B’

A+A 5K A'+A”

with [A],=#A,/y

withk=r 's71

withk=ry Mls'

with k =ry/2 Mgl

V = interaction volume
N, = Avogadro’s number

Think y=1
ie. V=1/N,
ODE = ODE
1 A
Continuous
Chemistry
1 T Process
Algebra
Discrete
Chemistry

v v

CTMC

CTMC




$||4.2—3 Definition: Cﬂ‘lttT and D'I:S[?T

Cont, and Disc,

For a volumetric factor p:M !, we define a translation Cont., from a discrete chemical systems (C,P),

with species X and initial molecule count #Xy = #X(P), to a continuous chemical systems (C,V) with

initial concentration [X]y = Vx. The translation Disc, is its inverse, up to a rounding error [ v[X]o | in

converting concentrations to molecule counts. Since 7y is a global conversion constant, we later

usually omit it as a subscript.

Cont.(X =" P)
Cont.(X+Y —' P)
Cont(X+X =™ P)
Cont.(#Xg)
Disc(X =5 P)
Disc,(X+Y »¥P)
Disc,(X+X »*P)
Drsc,([X]o)

=X P
=X+Y kP
=X+X >XP
=[X]o
=X-=>'P
=X+Y »'P
=X+X—>'P
=Xy

withk=r,

with k =ry

with k =ry/2
with [X]g = #Xo/y

withr=%k,

with r=kfy

with r=2k/y
with #Xg = y[X]o |

r's
Xgemol
kst
kMt
kMt
[X]o:-M

ODE

t
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Chemistry

'
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Chemistry

v

CTMC

ODE
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Algebra

CTMC




vy A+B —>k, C+C
Vyi A+C —>k, D
Vs C —>ks E+F
vy F+F —>ky B

Quantity
changes

Stoichiometric
matrix

KRaTe laws

[X]* = N
[A] = -l - 15
[B]* = -l + 1,
[Cl =2l -1;,-1;
[D] =1,

[El" =13

[FI*=15-2l,

From Reactions to ODEs

Stoichiometric

Write the
coefficients by
columns

Matrix

reactions

\41

Vo

V3

Vyq

-1

-1

-1

1

2

-1

species

1

X| | ml o a|lwl >Z

d

Read the concentration changes

from the rows

D
k
AJLC

G

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

B C
hFJ\kiE

Set a rate law for each reaction
(Degradation/Hetero/Homeo)

v

CTMC

<
1, ki[A][B]
Eg. [A] = | k,[A]C]
-k;[A][B] - k,[A][C] lz 2kg[C]
|4 k4[F]2

ODE

|

Process
Algebra

|

CTMC

X: chemical species

[-]: quantity of molecules
I: rate laws

k: kinetic parameters

N: stoichiometric matrix




From Processes to ODEs via Chemistry!

Al

i

’0 900xA, 500xB, 100xC

directive sample 0.03 1000
directive plot A(): B(); €()

new a@1.0:chan new b@1.0:chan new c@1.0:chan
let AQ) = do la;A() or ?b; B()
and B() = do Ib;B() or ?2c; C()
and C() = do lc;C() or ?2a; A()

run (900 of A() | 500 of B() | 100 of C())

B = Ib(s),B @D QC(S),C
\C = IC(S),C @D 70(5),A)
(A+B —sB+B

B+C —»sC+C
(C+A % A+A

continuous_sys_generator

([AT = -s[A][B]+s[C][A]
[B]* = -s[B][C]+s[A][B]
[C] = -s[C][Al+s[BI[C]

interval/step [0:0.001:20.0]

(A) dx1/dt = - x1*x2 + x3*x1 0.9
(B) dx2/dt = - x2*x3 + x1*x2 05
©) dx3/dt = - x3*x1 + x2*x3 0.1

ODE = ODE
Continuous ‘
Chemistry
1 T Process
Algebra
Discrete
Chemistry
CTMC — CTMC




From Processes to ODEs via Chemistry!

Bt A ODE| = [ODE
a: A+B " A+A 1
b: A+A -2 A+B Continuous
(discrete reactions) Chemistry

[AT = 1[B]+ ry[A][B] - ry[A]? 1 T Process
B A [B] = -t[B]-r/[Al[B] + M[AR D Algebra
A+B 57 A+A Chemistry l
A+A - A+B ‘
(continuous reactions)

CTMC

CTMC

Different chemistry
but same ODEs, hence
equivalent automata

T:B->s A
a: A+B > A+A
b: A+A - B+B
(discrete reactions)

[A]* = t[B] + ry[A][B] - ry[A]?
B A [BI* = -t[B]-ry[A][B] + ry[AT?
A+B > A+A

A+A > 2 B+B

(continuous reactions)



Processes Rate Equation

Process Rate Equation for Reagents E

[X] = (E(YeE) Accre(Y X)-[Y]) - Deple(X)-[X]

Deple(X) =
2(i EX.iztyP) P+
(it E.X.i=2a(:P) ry-OutsOng(a) +
X(i: E-X.i=lag:P) ry-InsOng(a)

Accrg(Y, X) =
3(it E.Y.i=1yP) #X(P)-r +
3(i: E.Y.i=2a(:P) #X(P)-ry-OutsOng(a) +
3(i: E.Y.izlagy.P) #X(P)-ry-InsOng(a)

InsOng(a) = S(Y<E) #{Y.i | EY.i=2a,y;P}[Y]
OutsOng(a) = Z(YeE) #{Y.i | E.Y.i=la,yP}[Y]

for all XeE

X = T(r.),o e [X]. - "r‘[X]

X = ?a(,.):O
Y = |a(r),0

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

|

Process
Algebra

l

CTMC

[XT* = -ry[X][Y]
Y] = -ry[X][Y]

X = 70(,,.),0 — [X]' = -ZI"Y[X]Z

@ lG(r.),O




Continuous State Equivalence

Def: ~ is equivalence of polynomials over the field of reals.

ODE = ODE ODE = ODE
Thm: E =~ Cont(Ch(E)) t $
Continuous Continuous ‘
. Chemistry Chemistry
Thm: Cont(C) ~ Pi(C) 1 T Process
Algebra
Discrete
Chemistry l
CIMC| = |CIMC CIMC| = |CIMC

For each E there is an E' ~ E that is detangled (E' = Pi(Ch(E)))

For each E in automata form there is an an E' ~ E that is detangled and
in automata form (E' = Detangle(E)).



Basic Examples: Unary Reactions

[A]* =-K[A] = [A]*=-r[A]



Basic Examples: Binary Reactions

[A]*=[B]*=-k[A][B] = [A]*=[B]*= -ry[A][B]

?
A+B 5k 0
IAl=BIEY A= 20,0, B=1a,,0

e

A+B -1 0~ AlB

AIB l

Hetero Reaction

[A]* =-4k[A]* = [A]* =-2ry[A]?

)
o oz

e

A+A 20,7 AlA
A+A l

0‘9‘0 Homeo Reaction



Model Compactness

ODE = ODE
1 A
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Entangled vs detangled

E,; Detangle(E;)



n? Scaling Problems

- E,, has 2n variables (nodes) and 2n terms (arcs). - The stoichiometric matrix has size 2n-n? = 2n3,
- Ch(E,) has 2n species and n? reactions. - The ODEs have 2n variables and 2n(n+n) = 4n2 terms

(number of variables times number of accretions plus depletions when sums are distributed)

E; Ch(E;) StoichiometricMatrix(Ch(E;))
X1 - ?Q(F);Xz 001: Xo+y1 yr X1+y2 00 01 02 10 11 12 20 21 22
Xz = 204y Xo Aozt Xg*Yz =" Xp+Yo Xo -1 -1 - N I
Yo = lagy Yy aior Xi+Yo 2" XY, X; +#1 +1 +1 -1 -1 -1
Y1 =lagy Y, ay: X+Yq =" Xa+Ys X, 1 +1 +1 -1 -1 -1
Y2 = lagyYo gt X+Yp =" XYy Yo -1 o | = - | +1

Gz0° Xg¥o = XYy Y, sl -1 1 -1 1 -

+ = + = + -

Ay Xo+Y, 5" XotY Y2 +1 -1 ol | = +1 -1
ODE(E;)
[Xol* = -r[Xol[Yol - rlXollY1] - PIXoI[Y2] + PIXz1Yol + rIXC1Y1] + r[X:1[Y-]
[Xi]* = -r[X;0[Yo] - rDX(00Y4] - PDXGIIY 21 + r[Xo1[Y 0] + PIXoIIY 1] + PIXoIIY-] 2l
[Xo1" = -r[X2,][Yo] - r[XIIY1] - rDXRIY 2] + rIXid[Y ol + rIX(IIY 1] + rLX, Y] =7| 2l (1) @) |-
[Yol' = -r[Xo][Yol - r[Xi1[Yol - r[X 1Yol + rIXolY2] + PIXIIY 2] + r[XCIIY-] a e
[Y1]" = -r[XoIIY1] - rDX(IIY4] - rDXGIIY 1] + r[XoI[Y o] + PIXiI[Y o] + PIXR][Yo] ) (v

[Y2]" = -r[XollY2] - r[XidY2] - rXCIIY 2] + rIXo]Y1] + r[Xi1[Y1] + r[XA10Y4]
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Choice Law by ODEs

TA;B S TU;B = TA+|J'.B

@..TA.- T
e @ @
[A:TA;B@‘C“}BJ [A:TMU;B]
} !
4 aome)
| }

[A]" = -A[A] - W[A]
[B] = (A+m)[A]

[A]" = -(A+p)[A]
[BI* = A[A] + p[A]




Idle Delay Law by ODEs

A=t A® 1B = A=1.B
‘-.‘.TA
@...:C.H.. ®""'C'J'
[A:‘CA,'A@’CU,'BJ [A=TU;B ]
} |
useless— [A SA A ] {A—)“ B J
A—-H B
} |

'
S

[A] = -u[A]]

[A]" = -u[A]
[B]* = b[A] [B]* = b[A]




Hermanns: Interactive

Stochastic Interleaving Markoy Chains. Sec 4.1.2

t.B | t.D = 1,,(B | 1,,D) ® 1,.(1\:B | D)

o A= - directive sample 4.0 10000
Ex: A—I.O, [.I—Z.O @10 o0s SFih directive plot A(); B(): C(); D()
@ . let A() = delay@1.0; B()
H 750 and BO) = ()
[A1]o=1000 500 let C() = delay@2.0: D()
@2.0 250 and D() = ()

1000 of (A() | €
[€, 1521000 run of (AQ) | €0)

directive sample 4.0 10000
directive plot

=1= % ?2YA: B(); ?YC:; D(O); YO: AQ: €
@10 @1 0 10007 new YA@1.0:chah new YC@1.0:chan
@ ?"50' let AQ) = do delay@1.0; B() or 2vA

500 § ¥ and B() = ()
_ 250 - let €() = do delay@2.0; D() or 2vC
[Y1,=1000 @ @2.0 - @ @ and D) = ()
0 1
@2.0 0 4
let Y() =

do delay@1.0; (B() | €())

or delay@2.0; (A() | D())
or ?YA or ?YC

Amazingly, the B's and the D's from the two ELEEURIS

branches sum up to exponential distributions



Stochastic Interleaving Law by ODEs

Bl D = 1B | 7 D)@ 1B | D)

Want to show that B and D
on both sides have the
"same behavior” (equal

A =1,B (y = w(B | C)® (A, | D) quantities of B and D
€, =1,D C;=1,D produced at all fimes)
nxA; | hxC, A, =1,.B
\\nxY
(A, >'B ) (Y 5hB+Cy ) (IYF = -AIYIRLY] )
C,—-'D Y >HA,+D [A2]° = H[Y]-A[A,]
[Ado = n/y C, >4 D => [[BI* = A[Y]+A[A,]
[Cilo=n/y A, >\ B [C.]° = ALY I-HIC,]
W=y ) D= ulYIIC]
[[Al]' _ _A[Al]\ ([\/+A2]° _ _A[Y+A2] l i;/._;A.Z.:.:. .[Vjo.;[.A;j: ...................
[B]* = A[A;] -9 [B]* = A[Y+A,] = -A[YJ-uLY J*u[Y I-ALA,]
[Ci]° = -u[Ci] = [Y+C,]° = -u[Y+C,] = -A[Y]-A[A,]
ASLCVY DI = WD7Ce] LAY AL L Dol decors exponentily!

[B] and [D] have equal time evolutions on the two sides provided that [A;]=[Y+A,] and [C,]=[Y+C,].

Moreover [A;]y=[C;]o=[Y]p=n/y, and the initial conditions of the right hand system specify that [A,],=[C,],=0
(since only Y is present), hence [A;],=[Y+A,], and [C{]p=[Y+C.,]o. Similarly [B]p=[D]y=0. Therefore the final ODEs
have the same initial conditions for all variables, and hence have the same time evolution.

So, for example, if we run a stochastic simulation of the left hand side with n=1000
and with initially 1000xA1 and 1000xC1, we obtain the same curves for B and D than
a stochastic simulation of the right hand side with initially 1000xY.



Parametric Processes



Chemical Parametric Form (CPF)

E = Xi(p)=My, ... X (p,)=M, Reagents (n20)
At IR Ll R Molecules (n>0)
1t R A el Solutions (n>0)
n ==t ?n(p) In(p) Interactions

CPF::=EP with initial conditions

@ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|O = O|P = P)
and null molecule (M®0 = 0®M = M) (t.P = 0)

Not bounded-state systems. X; are distinct in E, p are vectors of names
Not finite-control systems p are vectors of distinct names when in binding position

T . Each free name n in E is assigned a fixed rate r:
But still flane—SpeCIeS sys‘rems. written either ng,, or pepe(n)=r.

A translation from CPF to CGF exists
(expanding all possible instantiation of parameters from the initial conditions)

An incremental translation algorithm exists
(expanding on demand from initial conditions)



The Repressilator

X

—
Neg

. [

Neg Neg

Parameftric representation

And Yet It Moves

A fine stochastic oscillator over
‘ i, @ Wwide range of parameters.

23

la
I
Ic

615

0
53847 40054

Simulation: Tirne = 53810.179900 (1070 points at 34439 simTime/sysTime and haled)

/” Neg/x,y]* = -r[Tr/x][Neg/xy] + n[Inh/x YEBY

Neg(a,b) = ?a; Inh(a,b) @ t,; (Tr(b) | Neg(a,b))

Inh(ab) =1,
Tr(b) =

; Neg(a,b)
lb: Tr(b) ® .. O

Neg(X(y.Yr) | Neg(yr.zi) | Neg(zy. ()

[Neg/y,z]* = -r[Tr/y][Neg/y,z] + n[Inh/y,z}==}
[Neg/z,x]* = -r[Tr/z][Neg/z,x] + n[Inh/z, e
[Inh/x,y]* = r[Tr/x][Neg/x,y] - n[Inh/xy] =
[Inh/y,z]* = r[Tr/y][Neg/y,z] - n[Inh/y,z] [
[Inh/z,x]* = r[Tr/z][Neg/z,x] - n[Inh/z x]
[Tr/x]* = ¢[Neg/z,x] - y[Tr/x]

b

[Tr/y]" = e[Neg/x,y] - v[Tr/y]

Neg/x,y —¢ Tr/y + Neg/x,y
Neg/y,z —¢ Tr/z + Neg/y,z
Neg/z,x —¢ Tr/x + Neg/z x

Tr/x + Neg/x,y —»" Tr/x + Inh/xy
Tr/y + Neg/y,z > Tr/y + Inh/y,z
Tr/z + Neg/z,x —»" Tr/z + Inh/z x
Inh/xy -" Neg/xy

Inh/y,z >" Neg/y,z

Inh/z,x —" Neg/z x

Tr/x —>'0

Tr/y -0

Tr/z >0
weg/x,y + Neg/y,z + Neg/z,x

\[Tr/z]‘ = ¢[Neg/y,z] - y[Tr/z]

J

Faused

Tr/z]* = ¢[Neg/y,z] - y[Tr/z]
[Tr/z]* = e[Neg/y,z] - y[Tr/z
(Neg/x,y) dx1/dt = 0.001 - (0.001 + x4)*x1 10
(Neg/x,y) dx2/dt = 0.001 - (0.001 + X5)*x2 10
(Neg/x,y) dx3/dt= 0,001 - (0.001 + x6)*x3 10
(Tr/x) dx4/dt = 0.1*x3 - 0.001*x4 100.0
(Trly) dx5/dt = 0.1*x1 - 0.001*x5 0

(Tr/z) dx6/dt = 0.1*x2 - 0.001*x6 0

simplifying (N is the quantity i ) ]
of each of the 3 gates) . AnalyT.lcally ot |
= an oscillator!
4 [Neg/x,yJ* = 1N - (n+r‘[Tr‘/x])[Neg/x,y]\ *!  Blossey-Cardelli-Phillips. |
eg/z x| = -(n+r(Tr/z eg/z X = ]
[Tr'/gx]' = s[NZg/ z,xn] - y[Tr/x] ? — / Maﬂab :
[Tr/y]* = ¢[Neg/x,y] - y[Tr/y] S

2500
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Quantitative Process Semantics

Continuous-state Semantics Process Rate Equation
(Generalized Mass Action)

[X] = (E(Y<E) Accre(Y, X)-[Y]) - Deple(X)-[X]  for all X<E

ODE ODV
1 Accretion Depletion

Continuous
Chemistry
1 T Process Nondeterministic
, Algebra Semantics Defined over the
Discrete syntax of processes
Chemistry .
‘ Stochastic
CTMC ] CTMC Semantics
Intepdctions Propensity

Discrete-state Semantics
(Chemical Master Equation) opr(p.t)/ot = X _5a(p-v)pr(p-v.t) - a(p)pr(p,t) forall peStates(E)

Process Master Equation



Some Consequences

e Process algebras are faithful to chemical semantics.
- And hence can be used for biochemical modeling
Pi(Ch(E)) = E Pi(Ch(E)) = E
Ch(Pi(C)) = C ConH{Ch(Pi(C))) ~ ConHC)
- (N.B. although CTMC graphs were sufficient for our purposes, there is still the issue of when two CTMC graphs
are stochastically equivalent. The "true” stochastic semantics is given by the Chapman-Kolmogorov equation for

Markov processes, a.k.a. the Chemical Master Equation. Such equation can be extracted directly from process
algebra as well, but it is notoriously difficult to use.)

e Process algebras lead to more compact models (representations),
which in addition are compositional.

- This is relevant to the current efforts in "scaling up” biological modeling.

e We also obtain a bulk (ODE) semantics for process algebras

- Opens up the possibility of studying "bulk laws" of processes; classical
analytical tools can be used.

- One has to be careful (as in chemistry) about stochastic effects.
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