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Cells Compute

No survival without computation!
- Finding food
- Avoiding predators

How do they compute?
- Unusual computational paradigms.

- Proteins: do they work like electronic circuits?
or process algebra?

- (Genes: what kind of software is that?

Signaling networks
- Clearly “information processing”
- They are "just chemistry”: molecule interactions
- But what are their principles and algorithms?

Complex, higher-order interactions

- MAPKKK = MAP Kinase Kinase Kinase:
that which operates on that which operates on that
which operates on protein.

Calbiochem’ MAPK Family Pathways

See cur iersctie pathway
wwwcalbiochem.com/MAPK

INPLIT

{ EMD Biosciences 4
{E1) | Jrrmy prrrerey —

¥
MAPKKK 2 > MAPKKK*

4
E2

MAPKK T_= MAPKK-P T~ MAPKK-PP

MAPKK F'ase
MAPK 5= MAPK-P = _> MAPK-PP
MAPK P'ase 1

ouTPUT

Ultrasensitivity in the mitogen-activated protein cascade,

Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, Proc.
Natl Acad. Sci. USA, 93, 10078-10083.



http://www.pnas.org/cgi/content/abstract/93/19/10078
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Stochastic Collectives



Stochastic Collectives

e "Collective":

- A large set of interacting finite state automata:
e Not quite language automata (“large set")
e Not quite cellular automata (“interacting” but not on a grid)
e Not quite process algebra (“collective behavior")
o Cf. multi-agent systems and swarm intelligence

e "Stochastic”:

- Interactions have rates
e Not quite discrete (hundreds or thousands of components)
e Not quite continuous (non-trivial stochastic effects)
e Not quite hybrid (no "switching” between regimes)

e Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?

e Let's say they are, at least because:

e Much of the knowledge being accumulated in Systems Biology
is described as state transition diagrams [Kitano].



Towards Systems Biology

Epidermal Growth Factor Receptor Pathway Map .
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Roche Applied Sciences Biochemical Pathways Wall Chart
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Interacting Automata

new a@r,
Communication
new b@l"z channels
new c@r,
A, = ?a; A, \
A, =lc; A;
A3 = T@A5; Al
Bl = T@AZ; BZ + |0,’ B ‘g
@ current State BZ = T@Al; Bl > g
== P Delay B 1§ ')b 8
=== Transition 3- 70, BZ
== P> Interaction
(0| 0 | Moy O et | g 0
Communicating automata: a graphical FSA-like 1 1] 2 3
notation for “finite state restriction-free n- CZ i T@A3' Cl
calculus processes"”. Interacting automata do not C3 = t@A s C2
even exchange values on communication.
The stochastic version has rateson A4 | B1 | C1 The system and
communications, and delays. initiol state

"Finite state” means: no composition or restriction inside recursion.
Analyzable by standard Markovian techniques, by first computing
the "product automaton” to obtain the underlying finite Markov
transition system. [Buchholz]



Interactions in a Population

Suppose this is the =" ()
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Interactions in a Population
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Interactions in
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Interactions in a Population (2)
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CTMC Semantics

{38}

CTMC

(homogeneous) Continuous Time
Markov Chain

- directed graph with no self loops
- nodes are system states

- arcs have transition rates

Probability of holding in state A:

2r,  2r, {2A,1B}
CTMC

Ib
PP(HA>1’) = e'”
in general, Pr(H,>t) = eR" where R is
the sum of all the exit rates from A
{1A 2B} 2r,
2r,
{3A}




Chemistry vs. Automata

A process algebra (chemistry)

rA+B—>,C+D
s:C+D—>,A+B

1 line per
reaction

Does A
become
Cor D?

The same "model”

A different process algebra (automata)

B

Maps to -
aCTMC

| ?
RCIIRAL I
1 line per
component A = !r‘kl; C bec?mes
Maps to B = ? r'kll. D
aCTMC D — !Skz; B

A Petri-Net-like representation. Precise and dynamic
but not modular, scalable, or maintainable.

A compositional graphical representation (precise,
dynamic and modular) and the corresponding calculus.



Groupies and Celebrities



Groupies and Celebrities

Celebrity

(does not want to be like somebody else)
a@1.0
b@1.0

directive sample 1.0 1000
directive plot A():; B()

new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?a; B()
and B() = do Ib; B() or ?b; A()

run 100 of (A() | B()

Ib

A stochastic collective of celebrities:

—AQ) — B0

Groupie
(wants to be like somebody different)
directive sample 1.0 1000 a@10
directive plot A(). B() b@1.0

new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?b; B()
and B() = do 'b; B() or ?a; A()

run 100 of (A() | B())

A stochastic collective of groupies:
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Stable because as soon as a A finds itself in the majority, it is more likely to

find somebody in the same state, and hence change, so the majority is weakened.
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Unstable because within an A majority, an A has difficulty finding a B to
emulate, but the few B's have plenty of A's to emulate, so the majority may
switch to B. Leads to deadlock when everybody is in the same state and there is
nobody different to emulate.



Both Together

A way Yo break the deadlocks: Groupies with just a few Celebrities

directive sample 10.0
directive plot Ag(); Bg(): Ac(); Bc()

new a@1.0:chan()
new b@1.0:chan()
MGnY A f@W let Ac() = do la; Ac() or ?a; Bc()
Gr‘ouples Celebrities and Bc() = do Ib; Be() or ?b; Ac()
let Ag() = do la; Ag() or ?b; Bg()
and Bg() = do |b; Bg() or ?a; Ag()
run 1 of Ac()
run 100 of (Ag() | Bg())
never
deadlock
500 SPikA
2af)
Bal
150 il
100 |
a0
I:I } L




Hysteric Groupies

We can get more regular behavior from groupies if they "need more
convincing”, or “hysteresis” (history-dependence), to switch states.

—Ga) — Gb) . directive sample 10.0 1000
"solid threshold” to observe switching E Sirective plot-Cati-Cbr

new a@1.0:chan()
o new b@1.0:chan()

let Ga() = do la; Ga() or ?b; ?b; Gb()
and 6b() = do 'b; 6b() or ?a; ?a; Ga()

let Da() = la; Da()
and Db() = |b; Db()

run 100 of (Ga() | 6b())
run 1of (Da() | Db())

1 sample orbit
Gavs. Gb

(With doping to
break deadlocks)

N.B.: It will not oscillate
without doping (noise)

200 Gal) —— Gb0) ~ directive sample 10.0 1000
180 4 directive plot Ga(): 6b()
70 ) b 160 | new a@1.0:chan()
140 1 e new b@1.0:chan()
120
?a ? b 100 1 sample orbit let Ga() = do la; Ga() or ?b; ?b; ?b; Gb()
?a ? b 22 ] \, Ga vs. Gb and Gb() = do |b; Gb() or ?a; ?a; ?2a; Ga()
i let Da() = la; Da()
40'llllllllll EEENE SN N EEEE SN E NN NN NN NSNS EEEE NN EEE N andDb():lb,Db()
20 -\-
0 SLTHAVA VARV, ; : . ; g TR : L—’J run 100 of (Ga() | 6b()) .
0 1 2 3 4 5 6 7 8 9 10 * run 1of (Da() | Db())
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The Two Semantic Sides of Chemistry

Continuous-state Semantics
(Generalized Mass Action)

ODE = ODE
Continuous
Chemistry
1 T Process Nondeterministic
. Algebra Semantics
Discrete
Chemistry .
‘ Stochastic
CTMC - CTMC Semantics

Discrete-state Semantics
(Chemical Master Equation)

These diagrams commute via appropriate maps.
L. Cardelli: "On Process Rate Semantics” (TCS)
L. Cardelli: "A Process Algebra Master Equation” (QEST07)



Quantitative Process Semantics

Continuous-state Semantics

(Generalized Mass Action)

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

Process
Algebra

l

CTMC

Discrete-state Semantics

(Chemical Master Equation)

Process Rate Equation

d[X]1/dt = (Z(YeE) Accrg(Y, X)-[Y]) - Deple(X)-[X]

ODIE/

Nondeterministic
Semantics

Stochastic

Semantics

Accretion

Depletion

Defined over the
syntax of processes

Intepactions Propensity

opr(p.t)/ot = X_5a(p-v)pr(p-v.t) - a(p)pr(p.t)

Process Master Equation

for all XeE

for all peStates(E)



Stochastic Processes
& Discrete Chemistry

ODE = ODE
t
Continuous
Chemistry
l T Process
Algebra
Discrete
Chemistry
b
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Chemical Reactions

A —r Bl +..+ Bn (n20) Unary Reaction  d[A]/dtf = -r[A] Exponential Decay
A+ A, 5" B +.+ B, m0) HeteroReaction d[A;]/dt=-r[A;][A,] Mass Action Law

A+A F 31 +...+ Bn (n0)  Homeo Reaction d[A]/dt = -2r[A]? Mass Action Law
(assuming AzB;zA, for all i,j)

No other reactions!

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 1 Chapter IV: Chemical Kinetics THE COLLISION THEORY OF
. . . [David A. Reckhow , CEE 572 Course] REACTION RATES
The chemical Langevin equation .. reactions may be either elementary or non- www.chemguide.co.uk
Daniel T. Gillespie® i i i ine i
Research Departmfn!, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555 elementary. Elementary react10n§ are thF)SG reactions The (;hances Of all thlS. hap p enlng .lf your
that occur exactly as they are written, without any reaction needed a collision involving more
] ) ] . intermediate steps. These reactions almost always than 2 particles are remote. All three (or
Genuinely rrimolecular reactions do not physically occur | involve just one or two reactants. ... Non-elementary | more) particles would have to arrive at

in dilute fluids with any appreciable frequency. Apparently | reactions involve a series of two or more elementary || exactly the same point in space at the same
trimolecular reactions in a fluid are usually the combined reactions. Many complex environmental reactions arefl time, with everything lined up exactly right,

result of two bimolecular reactions and one monomolecular | Non-elementary. In general, reactions with an overall | and having enough energy to react. That's
reaction order greater than two, or reactions with not likely to happen very often!

some non-integer reaction order are non-elementary.

reaction. and involve an additional short-lived species.

Trimolecular reactions: Enzymatic reactions:
A+B+C-o"D S EyP

the measured "r" is an (imperfect) the "r" is given by Michaelis-Menten

aggregate of e.g.: (approximated steady-state) laws:
A+Bo AB E+SoES

AB+C > D ES>P+E

000 0000000000000 0000000000000000000000000000000 000 0000000000000 000000000000000000000000000000

® 0000000000000 0000OCOCKCNCS
00 0000000000000 000OCOCCFCVS
® 0000000000000 000000OCOCV



Chemical 6round Form (CGF)

[ IOt Reagents
M:=0 : PO M Molecules
B TR OO 1 D16 Solutions

|11 | il ! I Interacting Automata
TC «o= T(r‘) , ?G(r.) i .G(r) Actions (delay, lnpu’r, OUTPUT) + dynamic forking
CGF ::=EP Reagents plus Initial Conditions

(To translate chemistry to processes we giiss f;gcnhjls;ﬁ;:g:?p%s;+of|c|;r‘:clg‘)emical reactions)

need a bit more than interacting
automata: we may have "+" on the right
of —, that is we may need "|" after =.)

and null molecule (M@0 = 0®M = M)
Each X in E is a distinct species
Each name a is assigned a fixed rate r: a,

I
4 Ex: Interacting Automata

() (= finite-control CGFs: they use "|" only in initial conditions):

| Automatonin state A
?a?b A=la;A®?bB

B=1b'B®2aA I Automaton in state B

A|A|B|B | TInitial

B
' conditions:
Ib

2A and 2B



From Reagents to Reactions (by example)

Interacting _ Discrete
Automata Chemistry

initial states initial quantities
AlTAT.TA #A

ODE ODE

A
@r 1
@ ....... e A r A Continuous
Chemistry
1 T Process
> Algebra
Discrete
\@r A+B - A’+B’ Chemistry

v v

CTMC = CTMC




From Reagents to Reactions: Ch(E)

Eu=0 : X=M,E Reagents | |
EX.i & thei-th
M:=0 : PO M Molecules ®-summand of the
| . molecule M
Pu=0: X|P Solutions associated with
M= Ty | 204 i lag)  Interactions (delay, input, output) fhe X reagent of E
CGF ::=EP Reagents plus Initial Conditions

Chemical reactions for E,Pl (N.B.: <...> are reaction tags to obtain multiplicity of reactions,
and P is P with all the | changed to +)

o ((5) e
{(Xix X = P) s.t. EX.i = 145:P} L
{(Xiyjp: X+Y o5rP+Q) st XzY, EX.i=2a,P EY.j=la.,Q} U
{(Xixjp: X+ X 2P+ Q) st EXi=?a,.P, EX]=la,.Q) < E}

Initial conditions for P:
Ch(P):=| P



From Reactions to Reagents (by example)

channels and rates

Half-rate for
homeo reactions

k
AJLC

L

2.8

ODE

vi A+B —k C+C  Interaction (1 per reaction)
vy A+C —k, D Matrix v v v v
k) Veke) V3k3) Vakas2)
vi: C —k; E+F A 2(clo) 2D
% F+F —>ky B ‘e ‘é’ B I:0
o L
‘ £ ¢ 0 w(EIF)
c W D
/ q;)_ b
: Fill the matrix by columns: o5 E
Degradation reaction v;: X —k P, F
add t;P; to <X,v;>.
Hetero reaction v;: X+Y —k P, 1
add ?;P; to <X,v> and |;0 to <Y v
Homeo reaction v;: X+X —k; P, 2: Read the result by rows:

add ?;P; and |;0 to <X v>
A= ?Vl(kl);(clc) ® ?Vz(kz)JD

B-= !vl(kl);O

C= W40 @ 13:(E|F)
D=0

E=0

F = 2Vagar2yB @ Wy(a/2)0

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

7, B C
.0 v1(4\[_: Ak3 E

ODE

|

Process
Algebra

|

CTMC




From Reactions to Reagents: Pi(C)

vi X —>" Y;+.+Y,+0 Unary Reaction
vi X;+X, o Y+.+Y, +0 Binary Reaction

From uniquely-labeled (v:) chemical reactions C to a CGF Pi(C):

Pi(C) = {(X= &((v: X >KP)eC) of (t4y:P) ®
@((v: X+Y =k P)eC and YzX) of (?vy.P) ®
@((v: Y+X =k P)eC and YzX) of (Iv(y.0) ®
A((v: X+X =k P)eC) of (Pvy/2y.P @ vy/21,0) )
s.1. X is a species in C}

ODE = ODE
Continuous I
Chemistry

1 T Process

Algebra
Discrete
Chemistry
v

CTMC

CTMC




Entangled vs Detangled

' a: A+B " A+B’ b: A+B —* A+B’
la
8 a: A+C 1 A+C” b QAQ le c: A+C > A+C
,
e ~—(®) A=la;A (B) % @ A=1bA® IGA
) B ="7?a;B’ B ="7?b;B’
@-_a.@ C=2a,C @L.@ (ber)  c=rc
(a@r) p_g (c@r)  B'=0
C=0 C'=0
Entangled: Two reactions Detangled: Two reactions
on one channel on two separate channels

We need a semantics of automata that identifies
automata that have the "same chemistry”.

No process algebra equivalence is like this!




Same Semantics

Could chemistry itself be that semantics?
No: different sets of reactions can have the same behavior!

B —ss A fa 'b
A+B T A+A
A+A -2 A+B

A=!a;A®?a;B - A=1a:A®D'b:ADP?bB
B ?a;A s T(S)’.A 0" = .4, D, <0,
‘Q B= ?a;A @ T(S);A

B—>sA
/ A+B - A+A "
A+A > B+B < Different reactions,

but they induce the

same ODEs
(a@r)

(b@r/2)

A=!a;,A®'b;B® ?b;B
B=?3,A® 1A




ODE

Continuous
Chemistr
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Discrete Semantics of Reactions

A+B > A+A
A+B > B+B

A+B+B

{1A 2B} 2r, op
(3B} @e——0g__ 20— @ (3A)
2r,  2r, {2A,1B}

CTMC

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

|

Process
Algebra

|

CTMC




Discrete Semantics of Reagents

?
a ?a
T
- -7
/,, //
7 7
‘ 0 <~ (B)
7’
7’
: ) o
/ - Pie
”
I / /, Ib /” ,’/ |b
J/___—’ .
(}-—--o
-
-

{1A 2B} 2r, 5

(3B} @e——ag___S0— s (3A)
2r,  2r, {2A,1B}

CTMC

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

|

Process
Algebra

l

CTMC




Discrete State Equivalence

Def: 2% is equivalent CTMC's (isomorphic graphs with same rates).

ODE = ODE ODE = ODE
Thm: E 22 Ch(E) 1 I8 1
Continuous Continuous ‘
) Chemistry Chemistry
Thm: C 22 Pi(C) 1 T Process
Algebra
Discrete
Chemistry l
v v
CIMC| = |[CIMC CTMC| = |[CIMC

For each E there is an E' 22 E that is detangled (E' = Pi(Ch(E)))

For each E in automata form there is an an E' 22 E that is detangled
and in automata form (E' = Detangle(E)).



Process Algebra = Discrete Chemistry

This is enough to establish that the process
algebra is really faithful to the chemistry.

But CTMC are not the "ultimate semantics”
because there are still questions of when two
different CTMCs are actually equivalent (e.g.
“lumping”).

The "ultimate semantics” of chemistry is the
Chemical Master Eguation (derivable from the
Chapman-Kolmogorov equation of the CTMC).

ODE

t

Continuous
Chemistry

i

Discrete
Chemistry

v

CTMC

ODE

Y

Process
Algebra

l

CTMC




Continuous-State
Semantics

(short version)

ODE = ODE
Continuous I
Chemistry

l T Process

Algebra
Discrete
Chemistry
b

CTMC

|
0
—
<
O




Discrete
Chemistry

initial quantities

#A,

A -t A

A+B - A'+B’

A+A - A+A”

The Gillespie(?) Conversion

V = interaction volume

Continuous
Chemistry

v=N,V :M-1

initial concentrations

[Alo

A Sk A

A+B >k A’+B’

A+A 5K A'+A”

with [A],= #A,/y

withk=r sl

withk=ry Mlsl

with k =ry/2 M-1g1

N, = Avogadro’s number

Think y =1
i.e. V = 1/NA

M = mol-L!

molarity (concentration)

ODE

t

Continuous
Chemistry

‘1

Discrete
Chemistry

v

CTMC

ODE

|

Process
Algebra

l

CTMC




From Reactions to ODEs

v A+B —k, C+C Stoichiometric ODEl = [ODE
v A+C —k, D \cAé:fT;cTiZi‘rs by TS 1 t
vs: C —k; E+F columns 5 %}gg;;g;s
vi F+F >k B reactions K 1 T z";ﬁz
N Vi|Va| V3| Vs A Jl\ ° C Discr.ete :
Quantity Al-1]-1 Chemistry
changes v B[ -1 1 >k1< ‘ v
Stoichiometric of|Cc|2]-1]-1 CIMC| = |[CIMC
matrix 8_ D 1
KRaTe laws ? E 1 B C
F 1]-2 \ l k3
d[X]/dt = Nl / X Ky F =
d[A]/dT = _ll - |2 Read the concentration changes (SDeeTgSa;.g:iir\l?l:vefg:oflis:\eroe)aCT'On
d[B]/dT - _ll * l4 from the rows | X: chemical species
d[C]/dT = 2'1 - |2 - |3 < ) K[AI[B] I[.—ltacit;alr;“r,‘i;y of molecules
d[D)/dt = IZ E.g. d[A)/dt = I, k,[A][C] k: kinetic parameters
d[E]/dT = |3 -k [A][B] - ko[A][C] |3 k3[C] N: stoichiometric matrix
d[F)/dt = I, - 21, | K[FP?




From Processes to ODEs via Chemistry!

directive sample 0.03 1000
directive plot A(); B(): €()

A new a@1.0:chan new b@1.0:chan new c@1.0:chan
B let AQ) = do la;A() or ?b; B()
&0 and B() = do Ib:B() or 2¢; ()

and €() = do Ic;C() or ?a; A()

‘0 900xA, 500xB, 100xC 162 run (900 of A() | 500 of B() | 100 of C())

A =l A @ ?b)B | Matlab | § o &
B = Ib(s),B @ QC(S),C
\C = IC(S),C S ?G(s);A/ o _ 558 _ So8
(A+B s B+B A t
B+C 2 CeC L
\C"‘A —S A+A 1 T Process
- : Algebra
d[A)/dt = -s[A][B]+s[C][A] =
d[B]/dt = -s[B][C]+s[A][B] |
d[C1/dt = -s[C][A+s[BIIC] crvic I CThvc




Processes Rate Equation

Process Rate Equation for Reagents E in volume y O?E = [ODE
Continuous
d[X1/dt = (Z(YeE) Accre(Y, X)-[Y]) - Deple(X)-[X] Chemistry ‘
for all X<E 1 T Process
Algeb
"The change in process concentration (!!) for X at time t is: Discrete S
the sum over all possible (kinds of) processes Y of: Chemistry
the concentration at time t of ¥ ‘
times the accretion from Y to X ctMCcl = [cTMmC
minus the concentration at time t of X
times the depletion of X to some other ¥*
Deple(X) =
3(it EX.iztgy,P) r+
%(i E.X.i=?a:P) ry-OutsOng(a) +
2(i: E.X.i=lagy:P) ry-InsOng(a) X =10 — d[X]/dt=-r[X]
Accre(Y, X) - X =2a,0  d[X)/dt = -ry[X][Y]
ARG Y=lay0  dYVdt = -ry[X][Y]
3(i: E.Y.iz2a,;P) #X(P)-ry-OutsOng(a) + = 9y -
2(i: E.Y.i=lag.y:P) #X(P)-ry-InsOng(a) :
X = DG(P),O —> d[X]/dT = -Zry[X]

InsOng(a) = X(Y<E) #{Y.i | EY.i=2q,,,P}[Y] @ la, 0
OutsOn(a) = x(Y<E) #{Y.i | E.Y.izla,y:P}-[Y] (r)



Continuous State Equivalence

Def: ~ is equivalence of polynomials over the field of reals.

ODE = ODE ODE = ODE
Thm: E ~ Cont(Ch(E)) ¢ 1
Continuous Continuous ‘
) Chemistry Chemistry
Thm: Cont(C) ~ Pi(C) 1 T Process
Algebra
Discrete
Chemistry l
CTMC| = CTMC CTMC| = CTMC

For each E there is an E' ~ E that is detangled (E' = Pi(Ch(E)))

For each E in automata form there is an an E' ~ E that is detangled and
in automata form (E' = Detangle(E)).



Model Compactness

ODE = ODE
t
Continuous
Chemistry
l T Process
Algebra
Discrete
Chemistry
b

CTMC CTMC




Entangled vs detangled

E, Detangle(E;)

(closely related to
Pi(Ch(Ey)))



n? Scaling Problems

- E, has 2n variables (nodes) and 2n terms (arcs). - The stoichiometric matrix has size 2n-n2 = 2n3,
- Ch(E,) has 2n species and n? reactions. - The ODEs have 2n variables and 2n(n+n) = 4n2 terms

(number of variables times number of accretions plus depletions when sums are distributed)

E; Ch(E;) StoichiometricMatrix(Ch(E;))

;Zf :: ;2((:));:21 22(: ;:2:3,/10 _—:: >><<1 1:;/21 doo do1 do2 G0 Qi Gz G0 Q21 G
Xz = 20(:Xo Aozt Xg+Yz =" X+Yo e -t Lol 1«1 4l
Yo = lagy Y, Ao Xi+Yo =" Xo+Y, X; +1 +1 +1 -1 -1 -1

Yi=laeY, gt XYy o7 X+ X5 +1 +1 +#1 -1 -1 -
Y2 =lagyYo apt Xi+Y, o XYy Yy -1 o -1 o -1 o1

a0 XotYo 2" Xo+Yy

Qo XotY, o XY, Y, +1 -1 +1 -1 +1 -1

Aozt XtV o Xty Y, +1 -1 +1 -1 +1 -1
ODE(E;)
d[Xo)/dt = -r[Xol[Yol - PIXoI[Y1] - PIXoIY,1+ rIXaI[Yol + PIXo11Y:1] + PIX,1IY,]
d[X;1/dt = -r[X,1[Yo] - rIX;I0Y1] - rIXI0Y2] + PIXoY ol *+ rIXollY 1] + r[Xo1IY2]
d[X,1/dt = -r[X,][Yol - rIXaIY1] - PIXRIIYo0 + rIX I Yol + PIX Y, + rIX(IIY2] | = 2 @) () |
d[Yol/dt = -r[Xo][Yo] - rXi1[Yo] - rX2I[Yol + r[XoIIY21 + PIX Y21+ rIX,IY2]
d[Y,)/dt = -r[Xo][Y1] - PIXY4] - rIXGI0Y 1]+ rIXol[Yol + PIX Yol + r[X 1Y) () @

d[Y,1/dt = -r[XoI[Y2] - r[X 1Y 2] - rDXRIIY 2] + r[XoI[Y ] + r[XI0Y 4] + P[X,I1Y4]



GMA 2z CME

ODE = ODE

t

Continuous
Chemistry

i 1 T Process
Algebra
v Discrete
Chemistry
' v l

CTMC

CTMC




A+A 52 A

1*reaction rate ry because
1*A is lost in reaction.

m@Alz =d A]/dt-@AF/

A+A —)rV A
[A]0=2/ Y

A+A 5 A
A+A

v

2r
M.
A+A A

=2 A+A 50

2*reaction rate ry/2 because
2*A are lost in reaction.

A+A — 20
[Alg=2/y

A+A 510
A+A

\

+ o—Tse
A+A 0

A

Law of Mass Action

Gillespie conversion

CTMC



... as Automata

d[A]/dt = 2ry[A]2 = d[A]/dt =-4k[A]? = d[A]/dt = -4k[A]2 = d[A]/dt = -2ry[A]2

) 1)
(nAsA>*A | AAS0k=072)

A =?a5,,0 ® lag,;A [Al=2/y [Al=2/v A=7a,,0 ® a0
AlA NATA 54 A A+A 520 7~ AA
l A+A A+A l
y V
4r 4r 2r 2r
OO —_ *—>0 i *—>0 —_—  —
AlA A A+A A A+A 0 AlA 0
a ?a la
‘a (a@r)

(a@2r)



Continuous vs. Discrete Groupies

?b

=C®@Ds

o

Ib

All with
1x Doping

Matlab

oooooooooo _sys_generator

22222

uuuuu

11111

SPiM

x200

x20000



The Repressilator

X

-1 L]

Neg

L [l

Neg Neg

Parametric representation

And Yet It Moves

R.Blossey, L.Cardelli, A Phillips:
Compositionality, Stochasticity and
Cooperativity in Dynamic Models of
Gene Regulation (HFSP Journal)

A fine stochastic oscillator over

123

615

a wide range of parameters.

la
I
Ic

Pi

I
534947

40054 Faused

Sirnulation: Tirne = 53810179900 (1070 points at 34439 simTime/sysTime and halted)

Neg(a,b) = ?a; Inh(a,b) @ z.; (Tr(b) | Neg(a,b))

Inh(a,b) = 1,; Neg(a,b)
Tr(b)=1b: Tr(b)® . 0

Neg(X¢y.Yr) | Neg(y.ze) | Neg(zgy. ()

b

Neg/x,y —¢ Tr/y + Neg/x,y
Neg/y,z —¢ Tr/z + Neg/y,z
Neg/z,x —¢ Tr/x + Neg/z x

Tr/x + Neg/x,y —>" Tr/x + Inh/xy
Tr/y + Neg/y,z - Tr/y + Inh/y,z
Tr/z + Neg/z,x —" Tr/z + Inh/z x
Inh/x,y —" Neg/x.y

Inh/y,z »" Neg/y,z

Inh/z,x —" Neg/z,x

Tr/x —>10

Tr/y -0

Tr/z >0
wg/x,y + Neg/y,z + Neg/z,x

/d[Neg/x y1/dt = -r[Tr/x][Neg/x,y] + n[Inh/<¥N
d[Neg/y,z]/dt = -r[Tr/y][Neg/y,z] + n[Inh/y; 23|
d[Neg/z x1/dt = -r[Tr/z][Neg/z,x] + n[Inh/Zx¥}
d[Inh/x,y]/dt = r[Tr/x][Neg/x,y] - n[Inh/x y}
d[Inh/y,z]/dt = r[Tr/y][Neg/y,z] - n[Inh/y,z]™"
d[Inh/z,x]/dt = r[Tr/z][Neg/z x] - n[Inh/z x]
d[Tr/x]/dt = ¢[Neg/z,x] - y[Tr/x]
d[Tr/yl/dt = ¢[Neg/x y] - y[Tr/y]

@Tr/z]/d‘r = ¢[Neg/y,z] - y[Tr/z]

)

simplifying (N is the quantity
of each of the 3 gates)

Analytically not |
an oscillator!

(a

d[Tr/x]/dt = e[Neg/z,x] - y[Tr/x]
d[Tr/y]l/dt = €[Neg/x y] - y[Tr/y]
Q[Tr‘/z]/d’r = ¢[Neg/y,z] - y[Tr/z]

[Neg/x,yl/dt = WN - (n+r[Tr/x])[Neg/x,y] )
d[Neg/y,z]/dt = n"N - (n+r[Tr/y])[Neg/y,z] w0
d[Neg/z,x]/dt = nN - (n+r[Tr/z])[Neg/z x] o

Ma‘rlab

us_sys_gen

N

a 500 1000 1500 2000 2500

intervallstep [0:10:20000] N=1, =10, £20.1, n=0.001, 1=0.001

(Neg/xy) dx1/dt = 0001 - (0.001 + x4Y*x1 10

(Neg/xy) dx2/dt = 0,001 - (0.001 + x5)*x2 10
(Neg/xy) dx3/dt = 0001 - (0.001 + x6)*x3 10
(Tr/x) dx4/dt = 0.1%x3 - 0.001*x4 1000
(Trly) dx5/dt = 0.1%x1 - 0.001*x5 0
(Tr/z) dx6/dt = 012 - 0.001*x6 0
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Conclusions

Compositional models
- Accurate (at the "appropriate” abstraction level).
- Manageable (so we can scale them up by composition).
- Executable (stochastic simulation).

Analysis techniques

- Mathematical techniques: Markov theory,
Chemical Master Equation, and Rate Equation

- Computing techniques: Abstraction and Refinement,
Model Checking, Causality Analysis.

Many lines of extensions
- Parametric processes for model factorization
- Polyautomata for Bio-Chemistry: complexation and polymerization
- Ultimately, rich process-algebra based modeling languages.

Quantitative techniques
- Important in the "real sciences”.



