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Aims

● Connections between modeling approaches
– Connecting the discrete/concurrent/stochastic/molecular approach

– to the continuous/sequential/deterministic/population approach

● Connecting syntax with semantics
– Syntax = model (equations/programs/diagrams/blobs etc.)

– Semantics = state space (generated by the syntax)

– N.B. model ≠ state space !!
● The same model can be interpreted in different state spaces

● Different models can have the same state space
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● Different models can have the same state space

● Different models of the same state space can support different analysis

● Ultimately, connections between analysis techniques
– We need (and sometimes have) good semantic techniques to analyze state 

spaces (e.g. calculus, but also modelchecking)

– But we need equally good syntactic techniques to structure complex models 
(e.g. compositionality) and analyze them (e.g. process algebra)
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Motivation: Cells Compute

● No survival without computation!
– Finding food

– Avoiding predators

● How do they compute?
– Unusual computational paradigms.

– Proteins: do they work like electronic circuits? 

– Genes: what kind of software is that?

● Signaling networks
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● Signaling networks
– Clearly “information processing”

– They are “just chemistry”: molecule interactions

– But what are their principles and algorithms?

● Complex, higher-order interactions
– MAPKKK = MAP Kinase Kinase Kinase: 

that which operates on that which operates on that 
which operates on protein.

● General models of biological computation
– What are the appropriate ones?
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Ultrasensitivity in the mitogen-activated protein cascade, 
Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, Proc. 
Natl. Acad. Sci. USA, 93, 10078-10083.



(Macro)Molecules as 
Interacting Automata

● Concurrent (math is based on processes, not functions)
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● Concurrent (math is based on processes, not functions)
● Asynchronous (no global clock)
● Stochastic (or nondeterministic)
● Stateful (e.g. phosphorylation state)
● Discrete (transitions between states)
● Interacting (an “interaction” can be pretty much anything

you want that changes molecular state)

● Based on work on process algebra and biological modeling; see 
references in related papers.



Stochastic Automata Collectives

● “Collective”:
– A large set of interacting finite state automata:

●Not quite language automata (“large set”)
●Not quite cellular automata (“interacting” but not on a grid)
●Not quite process algebra (“collective behavior”)
●Cf. multi-agent systems and swarm intelligence

● “Stochastic”:
– Interactions have rates
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– Interactions have rates
●Not quite discrete (hundreds or thousands of components)
●Not quite continuous (non-trivial stochastic effects)
●Not quite hybrid (no “switching” between regimes)

● Very much like biochemistry 
– Which is a large set of stochastically interacting molecules/proteins
– Are proteins finite state and subject to automata-like transitions?

●Let’s say they are, at least because:
●Much of the knowledge being accumulated in Systems Biology 

is described as state transition diagrams [Kitano].



Towards Systems Biology

S
yn
ta
x

L
u
c
a
 C

a
rd

e
ll
i

2008-03-13 6

State Transitions!



Compositionality (NOT!)

http://www.expasy.ch/cgi-bin/show_thumbnails.pl

Roche Applied Sciences Biochemical Pathways Wall Chart
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Interacting Automata

?a

A1

B1

!a

B2

@s

A1 is a state

a is a channel i.e. a named 
interaction interface
(e.g. a surface patch)

?,! indicate any complementarity of 
interaction (e.g. charge)

?a, !a indicate complementary actions, 

Current State

Interaction
Transition
Decay
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B3

@s ?a, !a indicate complementary actions, 

@r, @s are rates



Interacting Automata

?a
B1

!a

B2

@s

@r

A1 is a state

a is a channel i.e. a named 
interaction interface
(e.g. a surface patch)

?,! indicate any complementarity of 
interaction (e.g. charge)

?a, !a indicate complementary actions, 

Kinetic laws:

Two complementary 
actions may result in an 
interaction.

Current State

Interaction
Transition
Decay

A1
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B3

@s ?a, !a indicate complementary actions, 
joined by an interaction arrow

@r, @s are rates



Interacting Automata

?a
B1

!a

B2

@r

@s

Current State

Interaction
Transition
Decay

Kinetic laws:

Two complementary 
actions may result in an 
interaction.

A1

A1 is a state

a is a channel i.e. a named 
interaction interface
(e.g. a surface patch)

?,! indicate any complementarity of 
interaction (e.g. charge)

?a, !a indicate complementary actions, 
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B3

@s

A decay may happen
spontaneously.

?a, !a indicate complementary actions, 
joined by an interaction arrow

@r, @s are rates



Interacting Automata

τ@λ1
τ@λ2

τ@λ3

τ@λ5

@r1

@r2

@r3

?a !a

?b

!b!c

?c

A1

A2

A3

B1

B2B3

C1 C2

new a@r1
new b@r2
new c@r3

A1 = ?a; A2

A2 = !c; A3

A3 = τ@λ5; A1

B = τ@λ ; B + !a; B

Communication 
channels

A
utom

ata
The equivalent process algebra model
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τ@λ4

?c

C3

B1 = τ@λ2; B2 + !a; B3

B2 = τ@λ1; B1

B3 = ?b; B2

C1 = !b; C2 + ?c; C3

C2 = τ@λ3; C1

C3 = τ@λ4; C2

A1 | B1 | C1

A
utom

ata

The system and 
initial state

Current State

Interaction
Transition
Delay

Interactions have 
rates. Actions DO 
NOT have rates.



Interactions in a Population

!a

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Suppose this is the 
next interaction

(stochastically chosen)

L
u
c
a
 C

a
rd

e
ll
i

2008-03-13 12

A

B

!a

?a ?b

!b

!b !b

A

B

!a

?a ?b

!b

One lonely automaton

cannot interact



A

B

!a

?a ?b

!b

Interactions in a Population

!a

A

B

!a

?a ?b

!b
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!b

A

B

!a

?a ?b

!b

!b



A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Interactions in a Population

!a
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!b!b

A

B

!a

?a ?b

!b

All-A stable 
population



Interactions in a Population (2)

!a

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b
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A

B

!a

?a ?b

!b

!b !b

Suppose this is the 
next interaction



A

B

!a

?a ?b

!b!a

Interactions in a Population (2)

A
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?a ?b
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!b

A

B

!a

?a ?b

!b

!b

All-B stable 
population

Nondeterministic 
population behavior

(“multistability”)



CTMC Semantics

A

!a

?a ?b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

BA

r
CTMC
(homogeneous) Continuous Time 
Markov Chain
- directed graph with no self loops
- nodes are system states 
- arcs have transition rates

Probability of holding in state A:

Pr(HA>t) = e-rt

in general, Pr(HA>t) = e-Rt where R is 
the sum of all the exit rates from A
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B

?a ?b

!b

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC



r: A + B →k1 C + D
s: C + D →k2 A + B

Chemistry vs. Automata

A B

r

A process algebra (chemistry) A different process algebra (automata)

Reaction
oriented

1 line per 
reaction

Does A 
become 
C or D?

A B !rk1 ?rk1?sk2 !sk2Reaction
oriented
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A  =  !rk1; C
C  =  ?sk2; A

B  =  ?rk1; D
D  =  !sk2; B

C D
rk1

A Petri-Net-like representation. Precise and dynamic, 
but not modular, scalable, or maintainable.

A compositional graphical representation (precise, 
dynamic and modular) and the corresponding calculus.

Ιντεραχτιον
οριεντεδ

Maps to 
a CTMC

Maps to 
a CTMC

The same “model”

Interaction
oriented

reaction

1 line per 
component A 

becomes 
C not D!

C D
sk2



Groupies and Celebrities

L
u
c
a
 C

a
rd

e
ll
i

2008-03-13 19



Groupies and Celebrities

Groupie
(wants to be like somebody different)

Celebrity
(does not want to be like somebody else)

directive sample 1.0 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

run 100 of (A() | B())

directive sample 1.0 1000

directive plot A(); B()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?a; B()

and B() = do !b; B() or ?b; A()

run 100 of (A() | B())

A

B

!a

?b

!b

?a

A

B

!a

?a ?b

!b

a@1.0

b@1.0

a@1.0

b@1.0
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A() B()

always 
eventually 
deadlock

Unstable because within an A majority, an A has difficulty finding a B to 
emulate, but the few B’s have plenty of A’s to emulate, so the majority may 
switch to B. Leads to deadlock when everybody is in the same state and there is 
nobody different to emulate.

Stable because as soon as a A finds itself in the majority, it is more likely to 
find somebody in the same state, and hence change, so the majority is weakened.

A stochastic collective of celebrities: A stochastic collective of groupies:
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directive sample 10.0

directive plot Ag(); Bg(); Ac(); Bc()

new a@1.0:chan()

new b@1.0:chan()

let Ac() = do !a; Ac() or ?a; Bc()

and Bc() = do !b; Bc() or ?b; Ac()

let Ag() = do !a; Ag() or ?b; Bg()

and Bg() = do !b; Bg() or ?a; Ag()

run 1 of Ac() 

Both Together

A way to break the deadlocks: Groupies with just a few Celebrities 

A few
Celebrities

Many
Groupies ?a

!a

?b

!a

?a ?b

Ac

Bc

Ag

Bg
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run 1 of Ac() 

run 100 of (Ag() | Bg())

A tiny bit of 
“noise” can make a 
huge difference

!b!b
never

deadlock
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0 1 2 3 4 5 6 7 8 9 10

Ga() Gb()

Hysteric Groupies

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())

We can get more regular behavior from groupies if they “need more 
convincing”, or “hysteresis” (history-dependence), to switch states. 

(With doping to 

a “solid threshold” to observe switching

A

B
?a
?a

?b
?b

!a

!b !a !b
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1 sample orbit 
Ga vs. Gb
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0 50 100 150 200

Gb()

Regularity can 
arise not far 
from chaos
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1 sample orbit 
Ga vs. Gb

(With doping to 
break deadlocks)
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Ga() Gb()

!b

A

B

?a
?a

?b
?b

!a

!b

?a ?b

!a !b

directive sample 10.0 1000

directive plot Ga(); Gb()

new a@1.0:chan()

new b@1.0:chan()

let Ga() = do !a; Ga() or ?b; ?b; ?b; Gb()

and Gb() = do !b; Gb() or ?a; ?a; ?a; Ga()

let Da() = !a; Da()

and Db() = !b; Db()

run 100 of (Ga() | Gb())

run   1 of (Da() | Db())
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0 50 100 150 200

Gb()

N.B.: It will not oscillate 
without doping (noise)

“regular” 
oscillation
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The Two Semantic Sides of Chemistry

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics 
(Mass Action Kinetics)

Nondeterministic 

Semantics
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=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

Stochastic

Semantics

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)



Quantitative Process Semantics

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics 
(Mass Action Kinetics)

Nondeterministic 

Semantics

d[X]/dt = (Σ(Y∈E) AccrE(Y,X)⋅[Y]) - DeplE(X)⋅[X] for all X∈E

Process Rate Equation

Defined over the 
syntax of processes

Accretion Depletion
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=

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

Stochastic

Semantics

∂pr(p,t)/∂t   =   Σι∈ℑ aι(p-vι)⋅pr(p-vι,t) - aι(p)⋅pr(p,t) for all p∈States(E)

Process Master Equation

syntax of processes

Interactions Propensity



Stochastic Processes
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Chemical Reactions

A →r B1 +…+ Bn (n≥0)

A1 + A2 →r B1 +…+ Bn (n≥0)

A + A →r B1 +…+ Bn (n≥0)

Unary Reaction d[A]/dt = -r[A]

Hetero Reaction d[Ai]/dt = -r[A1][A2]

Homeo Reaction d[A]/dt = -2r[A]2

No other reactions!

Exponential Decay 

Mass Action Law

Mass Action Law

Chapter IV: Chemical Kinetics    

[David A. Reckhow , CEE 572 Course]

...  reactions may be either elementary or non-

elementary. Elementary reactions are those reactions 

that occur exactly as they are written, without any 

THE COLLISION THEORY OF 

REACTION RATES

www.chemguide.co.uk

The chances of all this happening if your 

reaction needed a collision involving more 

(assuming A≠Bi≠Aj for all i,j) 
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Trimolecular reactions:

A + B + C →r D

the measured “r” is an (imperfect)
aggregate of e.g.:

A + B ↔ AB

AB + C → D

that occur exactly as they are written, without any 

intermediate steps. These reactions almost always 

involve just one or two reactants. ... Non-elementary 

reactions involve a series of two or more elementary 

reactions. Many complex environmental reactions are 

non-elementary. In general, reactions with an overall 

reaction order greater than two, or reactions with 

some non-integer reaction order are non-elementary. 

reaction needed a collision involving more 

than 2 particles are remote. All three (or 

more) particles would have to arrive at 

exactly the same point in space at the same 

time, with everything lined up exactly right, 

and having enough energy to react. That's 

not likely to happen very often!

Enzymatic reactions:

S   E  r P

the “r” is given by Michaelis-Menten 
(approximated steady-state) laws:

E + S ↔ ES

ES → P + E

Reactions have 
rates. Molecules 
do not have rates.



Chemical Ground Form (CGF)

E ::= 0  ⋮ X=M, E    Reagents

M ::= 0  ⋮ π;P ⊕ M   Molecules

P ::= 0  ⋮ X | P       Solutions

π ::= τ(r) ⋮ ?a(r) ⋮ !a(r) Actions (delay, input, output) 

CGF ::= E,P Reagents plus Initial Conditions

⊕ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = 0|P = P) 
and null molecule (M⊕0 = 0⊕M = M)

(To translate chemistry to processes we 
need a bit more than interacting 
automata: we may have “+” on the right 

Interacting Automata  
+ dynamic forking

A stochastic 
subset of CCS 

(no values, no restriction)
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A

B

!a

?a ?b

!b

A = !a;A ⊕ ?b;B

B = !b;B ⊕ ?a;A

A|A|B|B

Ex: Interacting Automata 
(= finite-control CGFs: they use “|” only in initial conditions):

Initial 
conditions: 
2A and 2B

Automaton in state A

Automaton in state B

and null molecule (M⊕0 = 0⊕M = M)
Each X in E is a distinct species
Each name a is assigned a fixed rate r: a(r)

need a bit more than interacting 
automata: we may have “+” on the right 
of →, that is we may need “|” after π.)



From Reagents to Reactions (by example)

Interacting
Automata

Discrete 
Chemistry

A  � r A’A’A
@r

=

Continuous
Chemistry

Process
Algebra

ODE ODE
#A0A | A | ... | A

initial states initial quantities
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?a
A

B

A’

B’
!a A+B � r A’+B’@r

?a
A

A’ A”

!a
A+A � 2r A’+A”

@r

=

Discrete
Chemistry

Algebra

CTMC CTMC



From Reactions to Reagents (by example)

v1: A+B →k1 C+C

v2: A+C →k2 D

v3: C →k3 E+F

v4: F+F →k4 B

v1(k1) v2(k2) v3(k3) v4(k4/2)

A ?;(C|C) ?;D

B !;0

C !;0 τ;(E|F)

D

E

?;B

channels and rates 
(1 per reaction)

d
ef

in
it
io
ns

(1
 p
er
 s
pe

ci
es
)

Interaction
Matrix

1: Fill the matrix by columns:

Half-rate for 
homeo reactions

A

B C

D

C
k1

k2

k
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F
?;B

!;0
(1
 p
er
 s
pe

ci
es
)

Degradation reaction vi: X →ki Pi
add τ;Pi to <X,vii>. 

Hetero reaction vi: X+Y →ki Pi
add ?;Pi to <X,vi> and !;0 to <Y,vi>

Homeo reaction vi: X+X →ki Pi
add ?;Pi and !;0 to <X,vi>

2: Read the result by rows:

A = ?v1(k1);(C|C)  ⊕ ?v2(k2);D 

B = !v1(k1);0

C = !v2(k2);0  ⊕ τk3;(E|F)

D = 0 

E = 0 

F = ?v4(k4/2);B  ⊕ !v4(k4/2);0 

B C

EFk4
k3

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC



Entangled vs Detangled

A

!a

?a
B

C

B’

C’
?a

a: A+B →r A+B’

a: A+C →r A+C’

(a@r)

?b
B

C

B’

C’
?c

b: A+B →r A+B’

c: A+C →r A+C’!b !c
A

(b@r)

(c@r)

A = !a;A

B = ?a;B’

C = ?a;C’

B’ = 0

C’ = 0

A = !b;A ⊕ !c;A

B = ?b;B’

C = ?c;C’

B’ = 0

C’ = 0
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Detangled automata are in simple 
correspondence with chemistry.

2008-03-13 31

Entangled: Two reactions 
on one channel

Detangled: Two reactions 
on two separate channels

We need a semantics of automata that identifies 
automata that have the “same chemistry”.

No process algebra equivalence is like this!  

Entangled automata lead to more 
compact models than in chemistry.



Same Semantics

B →s A

A+B →r A+A

A+A →2r A+B

!a

?a ?a

B

A

(a@r)

τ@s

!a

?a ?b

!b

A

B
(a@r)

(b@r)

τ@s

Could chemistry itself be that semantics?

No: different sets of reactions can have the same behavior!  
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(b@r)

A = !a;A ⊕ !b;A ⊕ ?b;B

B = ?a;A ⊕ τ(s);A

A = !a;A ⊕ ?a;B

B = ?a;A ⊕ τ(s);A

B →s A

A+B →r A+A

A+A →r B+B

?a ?b

(a@r)

(b@r/2)

A

B

!b

!a

τ@s

A = !a;A ⊕ !b;B ⊕ ?b;B

B = ?a;A ⊕ τ(s);A

Different reactions, 
but they induce the 

same ODEs
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Discrete Semantics of Reactions

=

Continuous
Chemistry

Process
Algebra

ODE ODE

A+B →r A+A

A+B →r B+B

A+B+B

Syntax:
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=

Discrete
Chemistry

Algebra

CTMC CTMC

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC

Semantics:



Discrete Semantics of Reagents

=

Continuous
Chemistry

Process
Algebra

ODE ODE

A

!a

?a ?b

A

B

!a

?a ?b

!b

A

B

!a

?a ?b

!b

Syntax:
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Discrete
Chemistry

Algebra

CTMC CTMC

B

?a ?b

!b

{2A,1B}
{3A}

{1A,2B}
{3B}

2ra

2rb

2ra

2rb

CTMC

Semantics:



Discrete State Equivalence

● Def: � is equivalent CTMC’s (isomorphic graphs with same rates).

● Thm: E � Ch(E)

● Thm: C � Pi(C)

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

ODE ODE

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

ODE ODE
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● For each E there is an E’ � E that is detangled (E’ = Pi(Ch(E)))

● For each E in automata form there is an an E’ � E that is detangled 
and in automata form (E’ = Detangle(E)).
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Process Algebra = Discrete Chemistry

This is enough to establish that the process 
algebra is really faithful to the chemistry. 

But CTMC are not the “ultimate semantics” 
because there are still questions of when two 
different CTMCs are actually equivalent (e.g. 
“lumping”).

=

=

Continuous
Chemistry

Process
Algebra

ODE ODE

Discrete
Chemistry
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The “ultimate semantics” of chemistry is the 
Chemical Master Equation (derivable from the 
Chapman-Kolmogorov equation of the CTMC).

=CTMC CTMC



Exercise: Making Lines

Or: build me a population like this:
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Second-order and Zero-order Regime

?a

E

S

!a

P

directive sample 1000.0

directive plot S(); P(); E()

new a@1.0:chan()

let E() = !a; E()

and S() = ?a; P()

and P() = ()

run (1 of  E() | 1000 of S())

E+S →r E+P
Second-Order Regime
[S]• = -r[E][S]

1000×S, 1×E

@1.0
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?a

E

S

!a
ES

P

directive sample 1000.0

directive plot S(); P(); E()

new a@1.0:chan()

let E() = !a; delay@1.0; E()

and S() = ?a; P()

and P() = ()

run (1 of  E() | 1000 of S())

@1.0

@1.0

1000×S, 1×E

E+S →r ES+P

ES →s E

Zero-Order Regime 
[S]• ≅ -1  (by assuming [ES]• =0)

E

S P

τ(s)

?a(r)

!a(r)

Notation



Cascades
!b

?a

bLo

bHi

!c

cLo

cHi

!a

aHi

?a

?b

?b

100×aHi, 1000×bLo, 1000×cLo, rates=1.0

Second-Oder Regime cascade: 
a signal amplifier (MAPK)

aHi > 0   ⇒ cHi = max

directive sample 0.03

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(a:chan, b:chan) = 

do !b; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) = 

?a; ?a; Amp_hi(a,b)

run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let A() = !a; A()

run 100 of A()

L
u
c
a
 C

a
rd

e
ll
i

2008-03-13 40

directive sample 0.03

directive plot !a; !b; !c

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let Amp_hi(a:chan, b:chan) = 

do !b; delay@1.0; Amp_hi(a,b) or delay@1.0; Amp_lo(a,b)

and Amp_lo(a:chan, b:chan) = 

?a; ?a; Amp_hi(a,b)

run 1000 of (Amp_lo(a,b) | Amp_lo(b,c))

let A() = !a; delay@1.0; A()

run 2000 of A()

!b

?a

bLo

bHi

!c

cLo

cHi

!a

aHi

?a

?b

?b
2000×aHi, 1000×bLo, 1000×cLo, rates=1.0

Zero-Oder Regime cascade: 
a signal divider!
aHi = max  ⇒ cHi = 1/3 max



Ultrasensitivity

directive sample 215.0

directive plot S(); P(); E(); ES(); F(); FP()

new a@1.0:chan() new b@1.0:chan()

let S() = ?a; P()

and P() = ?b; S()

let E() = !a; delay@1.0; E()

and F() = !b; delay@1.0; F()

run 1000 of S()

let clock(t:float, tick:chan) =       (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti     (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let Sig(p:proc(), tick:chan) = (p() | ?tick; Sig(p,tick))

let raising(p:proc(), t:float) = 

(new tick:chan run (clock(t,tick) | Sig(p,tick)))

run 100 of F()

run raising(E,1.0)

F!b

E

S P
?b

?a

!a

@1.0

@1.0

@1.0

@1.0

E+S → ES+P
F+P → FP+S
ES → E
FP → P

100×F, 0..200×E

Zero-Order Regime 
A small E-F inbalance causes 
a much larger S-P switch.
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F!b

E

S P
?b

?a

!a

@1.0

@1.0

E+S → E+P
F+P → F+S

100×F, 0..200×E

Second-Order Regime 
directive sample 215.0 1000

directive plot S(); P(); E(); F()

new a@1.0:chan() new b@1.0:chan()

let S() = ?a; P()

and P() = ?b; S()

let E() = !a; E()

and F() = !b; F()

run 1000 of S()

let clock(t:float, tick:chan) =       (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti     (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let Sig(p:proc(), tick:chan) = (p() | ?tick; Sig(p,tick))

let raising(p:proc(), t:float) = 

(new tick:chan run (clock(t,tick) | Sig(p,tick)))

run 100 of F()

run raising(E,1.0)



Continuous-State
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The Gillespie(?) Conversion

Discrete 
Chemistry

Continuous 
Chemistry

A  � r A’ A  →k A’ with k = r

γ = NAV

#A0 [A]0 with [A]0 = #A0/γ

initial quantities initial concentrations

Think γ = 1
i.e. V = 1/NA

V = interaction volume

NA = Avogadro’s number

:s-1

:M-1

M = mol·L-1

molarity (concentration)
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A+B � r A’+B’ A+B →k A’+B’ with k = rγ

A+A � r A’+A” A+A →k A’+A” with k = rγ/2

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

:M-1s-1

:M-1s-1



From Reactions to ODEs

N v1 v2 v3 v4
A -1 -1

B -1 1

C 2 -1 -1

D 1

Write the 
coefficients by 
columns

reactions

sp
ec

ie
s

v1: A+B →k1 C+C

v2: A+C →k2 D

v3: C →k3 E+F

v4: F+F →k4 B

Stoichiometric 
Matrix

A

B C

D

C
k1

k2

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMCStoichiometric
matrix

Quantity 
changes
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D 1

E 1

F 1 -2

d[A]/dt = -l1 - l2
d[B]/dt = -l1 + l4
d[C]/dt = 2l1 - l2 - l3
d[D]/dt = l2
d[E]/dt = l3
d[F]/dt = l3 - 2l4

Read the concentration changes 
from the rows

X: chemical species

[-]: quantity of molecules

l: rate laws

k: kinetic parameters

N: stoichiometric matrix

X

sp
ec

ie
s

l
l1 k1[A][B]

l2 k2[A][C]
l3 k3[C]
l4 k4[F]2

d[X]/dt = N⋅⋅⋅⋅l

Set a rate law for each reaction 
(Degradation/Hetero/Homeo)

E.g. d[A]/dt = 
-k1[A][B] - k2[A][C]

B C

EFk4
k3

matrix

Rate laws



d[X]/dt = (Σ(Y∈E) AccrE(Y,X)⋅[Y]) - DeplE(X)⋅[X]
for all X∈E

Processes Rate Equation

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Process Rate Equation for Reagents E in volume γ

“The change in process concentration (!!) for X at time t is:

the sum over all possible (kinds of) processes Y of:

the concentration at time t of Y 

times the accretion from Y to X

minus the concentration at time t of X 

times the depletion of X to some other Y”
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DeplE(X) = 

Σ(i: E.X.i=τ(r);P) r + 

Σ(i: E.X.i=?a(r);P) rγ⋅OutsOnE(a) + 

Σ(i: E.X.i=!a(r);P) rγ⋅InsOnE(a)

AccrE(Y, X)  =

Σ(i: E.Y.i=τ(r);P) #X(P)⋅r +

Σ(i: E.Y.i=?a(r);P) #X(P)⋅rγ⋅OutsOnE(a) +

Σ(i: E.Y.i=!a(r);P) #X(P)⋅rγ⋅InsOnE(a)

InsOnE(a) = Σ(Y∈E) #{Y.i | E.Y.i=?a(r);P}⋅[Y]

OutsOnE(a) = Σ(Y∈E) #{Y.i | E.Y.i=!a(r);P}⋅[Y]

X = τ(r);0 d[X]/dt = -r[X]

X = ?a(r);0 d[X]/dt = -rγ[X][Y]

Y = !a(r);0 d[Y]/dt = -rγ[X][Y]

X = ?a(r);0 d[X]/dt = -2rγ[X]2

⊕ !a(r);0

times the depletion of X to some other Y”



Continuous State Equivalence

● Def: ≈ is equivalence of polynomials over the field of reals.

● Thm: E ≈ Cont(Ch(E))

● Thm: Cont(C) ≈ Pi(C)

=

=

Continuous
Chemistry
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Chemistry

Process
Algebra

ODE ODE
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ODE ODE
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● For each E there is an E’ ≈ E that is detangled (E’ = Pi(Ch(E)))

● For each E in automata form there is an an E’ ≈ E that is detangled and 
in automata form (E’ = Detangle(E)).
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Exercise: Making Waves

Or: build me a population like this:
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Nonlinear Transition (NLT)

A

!c

B
?c

A = ?c(s);B

B = !c(s);B

A+B →s B+B

@s

SPiM

directive sample 0.02 1000

directive plot B(); A()

val s=1.0

new c@s:chan

let A() = ?c; B()

and B() = !c;B()

run (1000 of A() | 1 of B())

N.B.: needs at 
least 1 B to 
“get started”.
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A+B →s B+B

[A]• = -s[A][B]
[B]• = s[A][B]

Matlab
continuous_sys_generator

interval/step [0:0.001:0.0]

(A) dx1/dt = - x1*x2 1000.0

(B) dx2/dt = x1*x2 1.0



Two NLTs: Bell Shape

A

!b

B
?b

!c

C
?c

[B]• = [B]([A]-[C])

A = ?b(1);B

B = !b(1);B ⊕ ?c(1);C

C = !c(1);C

A+B →1 B+B

SPiM
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directive sample 0.0025 1000

directive plot B(); A(); C()

new b@1.0:chan new c@1.0:chan

let A() = ?b; B()

and B() = do !b;B() or ?c; C()

and C() = !c;C()

run ((10000 of A()) | B() | C())

A+B →1 B+B
B+C →1 C+C

[A]• = -[A][B]
[B]• = [A][B]-[B][C]
[C]• = [B][C]

interval/step [0:0.000001:0.0025]

(A) dx1/dt = -x1*x2 10000.0

(B) dx2/dt = x1*x2 – x2*x3 1.0

(C) dx3/dt = x2*x3 1.0

Matlab
continuous_sys_generator



NLT in a Cycle: Oscillator (unstable)

directive sample 0.03 1000

directive plot A(); B(); C()

new a@1.0:chan new b@1.0:chan new c@1.0:chan

let A() = do !a;A() or ?b; B()

and B() = do !b;B() or ?c; C()

and C() = do !c;C() or ?a; A()

run (900 of A() | 500 of B() | 100 of C())
A B

!a

?c
?a

!b?b

C

!c

@1.0

@1.0

@1.0

900xA, 500xB, 100xC

A = !a(s);A ⊕ ?b(s);B

interval/step [0:0.001:20.0]

(A) dx1/dt = - x1*x2 + x3*x1 0.9

(B) dx2/dt = - x2*x3 + x1*x2 0.5

(C) dx3/dt = - x3*x1 + x2*x3 0.1 Matlab
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A = !a(s);A ⊕ ?b(s);B

B = !b(s);B ⊕ ?c(s);C

C = !c(s);C ⊕ ?a(s);A

A+B →s B+B
B+C →s C+C
C+A →s A+A

[A]• = -s[A][B]+s[C][A]
[B]• = -s[B][C]+s[A][B]
[C]• = -s[C][A]+s[B][C]

Matlab
continuous_sys_generator

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

interval/step [0:0.01:400.0]

(A) dx1/dt = - x1*x2 + x3*x1 0.51

(B) dx2/dt = - x2*x3 + x1*x2 0.5

(C) dx3/dt = - x3*x1 + x2*x3 0.49

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

ode45
ode23t ode23tb



Oscillator (stable)

directive sample 0.1 1000

directive plot A1(); A2(); A3()

val r=1.0 val s=1.0

new a1@s:chan new a2@s:chan new a3@s:chan

let A1() = do !a1;A1() or delay@r;A2() or ?a2; ?a2; A2()

and A2() = do !a2;A2() or delay@r;A3() or ?a3; ?a3; A3()

and A3() = do !a3;A3() or delay@r;A1() or ?a1; ?a1; A1()

run 1000 of A1()

A = !a(s);A ⊕ τr;B ⊕ ?b(s);A’

A’ = ?b(s);B

B = !b(s);B ⊕ τr;C ⊕ ?c(s);B’

B’ = ?c(s);C

C = !c(s);C ⊕ τr;A ⊕ ?a(s);C’

C’ = ?a(s);A

A →r B
A+B →s A’+B
A’+B →s B+B
B →r C
B+C →s B’+C
B’+C →s C+C

N.B. this does 
not deadlock!

A B

C

!c

!a

?c

?a

!b?b

?a

?b

?c

Sustained 
Determinisitic 
Oscillation
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B’+C →s C+C
C →r A
C+A →s C’+A
C’+A →s A+A

[A]• = -r[A]-s[A][B]+r[C]+s[C’][A]
[B]• = -r[B]-s[B][C]+r[A]+s[A’][B]
[C]• = -r[C]-s[C][A]+r[B]+s[B’][C]
[A’]• = -s[A’][B] + s[A][B]
[B’]• = -s[B’][C] + s[B][C]
[C’]• = -s[C’][A] + s[C][A]

SPiM

SPiM

Robust 
Stochastic 
Oscillation

interval/step [0:0.0001:0.1]

(A) dx1/dt = -x1 - x1*x2 + x3 + x6*x1 1000.0

(B) dx2/dt = -x2 - x2*x3 + x1 + x4*x2 0.0

(C) dx3/dt = -x3 - x3*x1 + x2 + x5*x3 0.0

(A’) dx4/dt = -x4*x2 + x1*x2 0.0

(B’) dx5/dt = -x5*x3 + x2*x3 0.0

(C’) dx6/dt = -x6*x1 + x3*x1 0.0

Matlab
continuous_sys_generator

Matlab
continuous_sys_generator



NLTs in Series: Soliton Propagation
directive sample 0.1 1000

directive plot A1(); A2(); A3(); A4(); A5(); A6(); A7(); A8(); 
A9(); A10(); A11(); A12(); A13()

val r=1.0 val s=1.0

new a2@s:chan new a3@s:chan new a4@s:chan

new a5@s:chan new a6@s:chan new a7@s:chan

new a8@s:chan new a9@s:chan new a10@s:chan

new a11@s:chan new a12@s:chan new a13@s:chan

let A1() = do delay@r;A2() or ?a2; A2()

and A2() = do !a2;A2() or delay@r;A3() or ?a3; A3()

and A3() = do !a3;A3() or delay@r;A4() or ?a4; A4()

and A4() = do !a4;A4() or delay@r;A5() or ?a5; A5()

and A5() = do !a5;A5() or delay@r;A6() or ?a6; A6()

and A6() = do !a6;A6() or delay@r;A7() or ?a7; A7()

and A7() = do !a7;A7() or delay@r;A8() or ?a8; A8()

and A8() = do !a8;A8() or delay@r;A9() or ?a9; A9()

and A9() = do !a9;A9() or delay@r;A10() or ?a10; A10()

and A10() = do !a10;A10() or delay@r;A11() or ?a11; A11()

and A11() = do !a11;A11() or delay@r;A12() or ?a12; A12()

and A12() = do !a12;A12() or delay@r;A13() or ?a13; A13()

and A13() = !a13;A13()

run 1000 of A1()

A0

!a1

A1

?a1

!an

An

?an?a2
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GMA ≠ CME

=

Continuous

ODE ODE Semantics #1
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Process
Algebra

CTMC CTMC

Syntax

Semantics #2



A+A →→→→2r A      =? A+A →→→→r 0

A+A → rγ/2 0
[A]0=2/γ

A+A →r 0

d[A]/dt = -rγ[A]2

A+A →rγ A
[A]0=2/γ

A+A →2r A

d[A]/dt = -rγ[A]2

2*reaction rate rγ/2 because 
2*A are lost in reaction.

1*reaction rate rγ because 
1*A is lost in reaction.

Gillespie conversion

Law of Mass Action
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A+A →r 0
A+A

A+A 0

r

A+A →2r A
A+A

A+A A

2r

Gillespie conversion

CTMC



... as Automata

d[A]/dt = -2rγ[A]2

k = rγ/2 A+A →2k 0
[A]0=2/γ

A+A →2r 0
A+A

A = ?a(r);0 ⊕ !a(r);0
A|A

d[A]/dt = -4k[A]2 d[A]/dt = -2rγ[A]2

k = rγ/2 A+A →4k A
[A]0=2/γ

A+A →4r A
A+A

d[A]/dt = -4k[A]2

A = ?a(2r);0 ⊕ !a(2r);A
A|A
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A+A 0

2r

A|A 0

2r

?a
A

!a

(a@r)

A

?a

!a

(a@2r)

A+A A

4r

A|A A

4r



Continuous vs. Discrete Groupies

M
a
tl

a
b

(all with doping)
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S
P

iM

2000×A , 0×B , 1×Ad , 1×Bd , r = 1.0

Groupe ODEs - Groupies.mat

[0:0.001:5.0] r=1.0 k=1.0

A dx1/dt = -(x1-x2),   2000.0

B dx2/dt = (x1-x2),   0.0

Groupe ODEs - Groupies Hysteric 1.mat

[0:0.001:5.0] r=1.0 k=1.0

A dx1/dt=x1*x4-x3*x1-x1+x4, 2000.0

A’ dx2/dt=x3*x1-x3*x2+x1-x2, 0.0

B dx3/dt=x3*x2-x1*x3-x3+x2, 0.0

B’ dx4/dt=x1*x3-x1*x4+x3-x4, 0.0

Groupe ODEs - Groupies Hysteric 2.mat

[0:0.001:5.0] r=1.0 k=1.0

A  dx1/dt=x1*x6-x3*x1-x1+x6, 2000.0

A’  dx2/dt=x3*x1-x3*x2+x1-x2, 0.0

A” dx5/dt=x3*x2-x3*x5+x2-x5, 0.0

B   dx3/dt=x3*x5-x1*x3-x3+x5, 0.0

B’  dx4/dt=x1*x3-x1*x4+x3-x4, 0.0

B”  dx6/dt=x1*x4-x1*x6+x4-x6, 0.0

directive sample 5.0 1000
directive plot B(); A()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; ?b; B()

and B() = do !b; B() or ?a; ?a; A()

let Ad() = !a; Ad()

and Bd() = !b; Bd()

run 2000 of A()

run 1 of (Ad() | Bd())

directive sample 5.0 1000

directive plot B(); A()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; ?b; ?b; B()

and B() = do !b; B() or ?a; ?a; ?a; A()

let Ad() = !a; Ad()

and Bd() = !b; Bd()

run  2000 of A() 

run 1 of (Ad() | Bd())

directive sample 5.0 1000

directive plot B(); A()

new a@1.0:chan()

new b@1.0:chan()

let A() = do !a; A() or ?b; B()

and B() = do !b; B() or ?a; A()

let Ad() = !a; Ad()

and Bd() = !b; Bd()

run 2000 of A() 

run 1 of (Ad() | Bd())



directive sample 50000.0 1000

directive plot !a; !b; !c

val dk = 0.001    (* Decay rate *)

val inh = 0.001   (* Inhibition rate *)

val cst = 0.1     (* Constitutive rate *)

let tr(p:chan()) = do !p; tr(p) or delay@dk

let neg(a:chan(), b:chan()) =

do ?a; delay@inh; neg(a,b)

or delay@cst; (tr(b) | neg(a,b))

val bnd = 1.0 (* Protein binding rate *)

new a@bnd:chan() new b@bnd:chan() new 
c@bnd:chan()

run (neg(c,a) | neg(a,b) | neg(b,c))

SPiM

A fine stochastic oscillator over 
a wide range of parameters.

And Yet It Moves

Neg(a,b) = ?a; Inh(a,b) ⊕ τε; (Tr(b) | Neg(a,b))

Inh(a,b) = τη; Neg(a,b)

Tr(b) = !b; Tr(b) ⊕ τ ; 0

d[Neg/x,y]/dt = -r[Tr/x][Neg/x,y] + η[Inh/x,y]
d[Neg/y,z]/dt = -r[Tr/y][Neg/y,z] + η[Inh/y,z]
d[Neg/z,x]/dt = -r[Tr/z][Neg/z,x] + η[Inh/z,x]
d[Inh/x,y]/dt = r[Tr/x][Neg/x,y] - η[Inh/x,y]
d[Inh/y,z]/dt = r[Tr/y][Neg/y,z] - η[Inh/y,z]

Neg Neg

Negx z

y

The Repressilator

Parametric representation

Neg(a,b) !b
?a

Inh(a,b)

τ(η)

Tr(b)

τ(δ)

τ(ε)

R.Blossey, L.Cardelli, A.Phillips:
Compositionality, Stochasticity and 
Cooperativity in Dynamic Models of 
Gene Regulation (HFSP Journal)
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run (neg(c,a) | neg(a,b) | neg(b,c))

Tr(b) = !b; Tr(b) ⊕ τγ; 0

Neg(x(r),y(r)) | Neg(y(r),z(r)) | Neg(z(r),x(r))

Neg/x,y →ε Tr/y + Neg/x,y 

Neg/y,z →ε Tr/z + Neg/y,z 

Neg/z,x →ε Tr/x + Neg/z,x 

Tr/x + Neg/x,y →r Tr/x + Inh/x,y 

Tr/y + Neg/y,z →r Tr/y + Inh/y,z 

Tr/z + Neg/z,x →r Tr/z + Inh/z,x 

Inh/x,y →η Neg/x,y

Inh/y,z →η Neg/y,z

Inh/z,x →η Neg/z,x

Tr/x →γ 0

Tr/y →γ 0

Tr/z →γ 0

Neg/x,y + Neg/y,z + Neg/z,x

d[Inh/y,z]/dt = r[Tr/y][Neg/y,z] - η[Inh/y,z]
d[Inh/z,x]/dt = r[Tr/z][Neg/z,x] - η[Inh/z,x]
d[Tr/x]/dt = ε[Neg/z,x] - γ[Tr/x]
d[Tr/y]/dt = ε[Neg/x,y] - γ[Tr/y]
d[Tr/z]/dt = ε[Neg/y,z] - γ[Tr/z]

d[Neg/x,y]/dt = ηN – (η+r[Tr/x])[Neg/x,y]
d[Neg/y,z]/dt = ηN – (η+r[Tr/y])[Neg/y,z]
d[Neg/z,x]/dt = ηN – (η+r[Tr/z])[Neg/z,x]
d[Tr/x]/dt = ε[Neg/z,x] - γ[Tr/x]
d[Tr/y]/dt = ε[Neg/x,y] - γ[Tr/y]
d[Tr/z]/dt = ε[Neg/y,z] - γ[Tr/z]

simplifying (N is the quantity 
of each of the 3 gates)

interval/step [0:10:20000] N=1, r=1.0, ε=0.1, η=0.001, γ=0.001

(Neg/x,y) dx1/dt = 0.001 – (0.001 + x4)*x1 1.0

(Neg/x,y) dx2/dt = 0.001 - (0.001 + x5)*x2 1.0

(Neg/x,y) dx3/dt = 0.001 - (0.001 + x6)*x3 1.0

(Tr/x) dx4/dt = 0.1*x3 - 0.001*x4 100.0

(Tr/y) dx5/dt = 0.1*x1 - 0.001*x5 0

(Tr/z) dx6/dt = 0.1*x2 - 0.001*x6 0

Matlab
continuous_sys_generator

Analytically not 
an oscillator!



Model Compactness
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Entangled vs detangled

?a

?a

X1

X0

!a

Y1

Y0

?a

!a

!a

?a00

X1

X0

Y1

Y0

?a01

?a02

?a10

?a11

?a20

?a21

?a22

!a00

!a01

!a02

!a10

!a11

!a20

!a21

!a22
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Detangle(E3)

(closely related to 
Pi(Ch(E3)) )

X2 Y2

E3

X2 Y2

?a11

?a12

!a11

!a12



n2 Scaling Problems

Ch(E3)

a00: X0+Y0 →r X1+Y1

a01: X0+Y1 →r X1+Y2

a02: X0+Y2 →r X1+Y0

a10: X1+Y0 →r X2+Y1

a11: X1+Y1 →r X2+Y2

- En has 2n variables (nodes) and 2n terms (arcs). - The stoichiometric matrix has size 2n⋅n2 = 2n3.

- Ch(En)  has 2n species and n2 reactions. - The ODEs have 2n variables and 2n(n+n) = 4n2 terms
(number of variables times number of accretions plus depletions when sums are distributed)

E3

X0 = ?a(r);X1

X1 = ?a(r);X2

X2 = ?a(r);X0

Y0 = !a(r);Y1

Y1 = !a(r);Y2

Y = !a ;Y

a00 a01 a02 a10 a11 a12 a20 a21 a22

X0 -1 -1 -1 +1 +1 +1

X1 +1 +1 +1 -1 -1 -1

X2 +1 +1 +1 -1 -1 -1

StoichiometricMatrix(Ch(E3))
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11 1 1 2 2

a12: X1+Y2 →r X2+Y0

a20: X2+Y0 →r X0+Y1

a21: X2+Y1 →r X0+Y2

a22: X2+Y2 →r X0+Y0

1 (r) 2

Y2 = !a(r);Y0

X2 +1 +1 +1 -1 -1 -1

Y0 -1 +1 -1 +1 -1 +1

Y1 +1 -1 +1 -1 +1 -1

Y2 +1 -1 +1 -1 +1 -1

ODE(E3)

d[X0]/dt = -r[X0][Y0] - r[X0][Y1] - r[X0][Y2] + r[X2][Y0] + r[X2][Y1] + r[X2][Y2]

d[X1]/dt = -r[X1][Y0] - r[X1][Y1] - r[X1][Y2] + r[X0][Y0] + r[X0][Y1] + r[X0][Y2]

d[X2]/dt = -r[X2][Y0] - r[X2][Y1] - r[X2][Y2] + r[X1][Y0] + r[X1][Y1] + r[X1][Y2]

d[Y0]/dt = -r[X0][Y0] - r[X1][Y0] - r[X2][Y0] + r[X0][Y2] + r[X1][Y2] + r[X2][Y2]

d[Y1]/dt = -r[X0][Y1] - r[X1][Y1] - r[X2][Y1] + r[X0][Y0] + r[X1][Y0] + r[X2][Y0]

d[Y2]/dt = -r[X0][Y2] - r[X1][Y2] - r[X2][Y2] + r[X0][Y1] + r[X1][Y1] + r[X2][Y1]

=



Conclusions
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Conclusions

● Compositional models
– Accurate (at the “appropriate” abstraction level).

– Manageable (so we can scale them up by composition).

– Executable (stochastic simulation).

● Analysis techniques
– Mathematical techniques: Markov theory, 

Chemical Master Equation, and Rate Equation

– Computing techniques: Abstraction and Refinement, 
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– Computing techniques: Abstraction and Refinement, 
Model Checking, Causality Analysis.

● Many lines of extensions
– Parametric processes for model factorization

– Polyautomata for Bio-Chemistry: complexation and polymerization
– Ultimately, rich process-algebra based modeling languages.

● Quantitative techniques
– Important in the “real sciences”.


