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Chemical Reactions

A —" B, +..+ B, (=00  Unary Reaction
A, +A, " B, +..+ B, (=00 Hetero Reaction
A+A —T B, +..+ B, (00 Homeo Reaction

No other reactions!

d[A]/dt = -r[A] Exponential Decay
d[A]/dt = -r[A][A,]  Mass Action Law
d[A]/dt = -2r[A]? Mass Action Law

(assuming A=B;=A, for all i,j)

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 1

The chemical Langevin equation

Daniel T. Gillespie®
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely frimolecular reactions do not physically occur
in dilute fluids with any appreciable frequency. Apparenily
trimolecular reactions in a fluid are usually the combined
result of two bimolecular reactions and one monomeolecular
reaction, and involve an additional short-lived species.

Chapter IV: Chemical Kinetics
[David A. Reckhow , CEE 572 Course]

. reactions may be either elementary or non-
elementary. Elementary reactions are those
reactions that occur exactly as they are
written, without any intermediate steps. These
reactions almost always involve just one or two
reactants. ... Non-elementary reactions involve
a series of two or more elementary reactions.
Many complex environmental reactions are non-
elementary. In general, reactions with an
overall reaction order greater than two, or
reactions with some non-integer reaction order
are non-elementary.

THE COLLISION THEORY OF REACTION
RATES www.chemguide.co.uk

The chances of all this happening if
your reaction needed a collision
involving more than 2 particles are
remote. All three (or more) particles
would have to arrive at exactly the
same point in space at the same time,
with everything lined up exactly right,
and having enough energy to react.
That's not likely to happen very often!

- Trimolecular reactions:

A+B+C—>'D

the measured “r” is an (imperfect)
aggregate of e.g.:

A+ B« AB
AB+C—>D

. Enzymatic reactions:

S _Ey P

the “r” is given by Michaelis-Menten
(approximated steady-state) laws:

E+S < ES
ES—-P+E




Luca Cardelli 2008-09-10 5



Chemical Ground Form (CGF)

E:x=0: X=M,E Reagents A stochastic
M:=0 : pPE M Molecules ‘(nos \iﬁise,:oc::s’sg‘rin)
P:=0: X|P Solutions

Pi=1p i 204 i lagy Actions (delay, input, output)

CGF = EP Reagents plus Initial Conditions

(To translate chemistry to processes we ® is stochastic choice (vs. + for chemical reactions)
yTop 0 is the null solution (P|0 = O|P = P)

need a bit more than interacting and null molecule (M@0 = 0®M = M)
automata: we may have "+" on the right Each X in E is a distinct species

of =, that is we may need *|" after p.) Each name a is assigned a fixed rate r: a,

I
< Ex: Interacting Automata

() (= finite-control CGFs: they use "|" only in initial conditions):

A

Automaton in state A
?a?b A=laA®?bB —
B - lb,B @ ?G,’A Automaton in state B

A|A|B|B | Initial

B
' conditions:
Ib

2A and 2B
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From CGF to Chemistry (by example)

A=la;,;A®D ?a,;B
B =7a,;A® 1A



From CGF to Chemistry (by example)

-

@..‘.@... A st A

B—>SA

A=la;A® ?a;B
B =7a,A® 1A



From CGF to Chemistry (by example)

@®--@

A+B - A’'+B’

2,
la, EO—=6)

A=1a;A® ?a;B
B =73,A® 1A



From CGF to Chemistry (by example)

\

A+A 527 AN +A”

Double rate for
homeo reactions

A=1a;A® ?a;B
B =7a;A® 1A



From CGF to Chemistry (by example)

Interacting _ Discrete
Automata Chemistry

initial states initial quantities
AlAl..lA kA,

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

ODE

Pro

cess

Algebra

CTMC




(15N e
M:=0 : pPEM
bibbte=( oAbl ffl

P =Ty | 200
CGF ::=EP

Chemical reactions for E P:

Ch(E) :=

From CGF to Chemistry: Ch(E)

la(r.)

Reagents

Molecules

Solutions

Interactions

Reagents plus Initial Conditions

ODE

t

Continuous
Chemistry

'

Discrete
Chemistry

v

CTMC

and P is P with all the | changed to +)

{(Xiy.E X+Y 5P+ Q) st XzY, EX.i = 2a,y,P, EY.j = layQ} L

{{(xixj: X+ X =2 P+ Q) st EXi=?a,P, EXj=la.Q}

Initial conditions for P:

Ch(P) :=

P

ODE

Process
Algebra

A 4

CTMC

(N.B.: <...> are reaction tags to obtain multiplicity of reactions,
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The “Type System” of Chemistry

The International System of Units (SI) defines the following physical units, with related derived units
and constants; note that amount of substance is a base unit in 51, like length and time:

mol  (a base unit) mole, unit of amount of substance

m (a base unit) meter, unit of length

5 (a base unit) second, unit of fime

L=0.001-m> liter (volume)

M=mol L molarity (concentration of substance)

Ny mmol™ = 6.022x107 Avogadro’'s number (number of particles per amount of substance)

For a substance X:mol, we write [X]:M for the concentration of X, and [}(]':f'd-s'1 for the time derivative

of the concentration.

A continuous chemical system (C,V) is a system of chemical reactions C
plus a vector of initial concentrations Vy: M, one for each species X.

The rates of unary reactions have dimension s'.

The rates of binary reactions have dimension M-'s1,
(because in both cases the rhs of an ODE should have dimension M-s1).

For a given volume of solution V, the volumetric factor y of dimension M is:
v: M1 = NV where N,:mol-" and V:L

#X / v : M = concentration of X molecules
v:[X] : 1 = total number of X molecules (rounded to an integer).



Discrete
Chemistry

initial quantities

#A,

A -t A

A+B - A'+B’

A+A - A+A”

The Gillespie Conversion

Continuous
. =N,V M1
Chemistry ' A
initial concentrations
[A]o with [A]o = #AO/Y
A ok A withk=r 's71

A+B -k A’+B”  withk=ry :Mls!

A+A K A+A” withk=ry2 Mgl

V =interaction volume

N, = Avogadro’s number

Think y=1
ie.V=1/N,

M =mol-L
molarity (concentration)

ODE — ODE
1 A
Continuous
Chemistry
l T Process
Algebra
Discrete
Chemistry

v v

CTMC CTMC




Conty and DiscY

+|4.2—3 Definition: Cﬂﬂt-f and DiscT

For a volumetric factor p:M !, we define a translation Cont., from a discrete chemical systems (C,P),
with species X and initial molecule count #Xy = #X(P), to a continuous chemical systems (C,V) with
initial concentration [X]p = Vy. The translation Disc, is its inverse, up to a rounding error [ y[X]o | in
converting concentrations to molecule counts. Since 7y is a global conversion constant, we later
usually omit it as a subscript.

Cont. (X =" P) =X-kP withk=r, ris! ks

Cont(X+Y »*P) =X+Y kP with k = ry ris! kM sl

Cont(X+X »*P) =X+X-FP with k = ry/2 ris! kM sl

Cont.(#Xg) =[X]o with [X]g = #Xo/y Xgmol  [X]p:M

Disc(X =5 P) =X—'P withr=k, ks r:s!

Disc(X+Y -5P) =X+Y >'P with r = kfy kMt st

Disc(X+X =%P) =X+X-'P with r = 2k/y kMt st

Disc,([X]o) = #Xg with #Xp = [X]o | [X]oM  Xgmol ODE —
Continuous
Chemistry

Ch, := Cont, o Ch It
Discrete

Chemistry

v

CTMC

ODE

Process
Algebra

CTMC
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From Reactions to ODEs (Law of Mass Action)

ODE

|

Process
Algebra

|

CTMC

X: chemical species
[-]: quantity of molecules

k: kinetic parameters
N: stoichiometric matrix

7% A+B %kl C+C . STOiChiomeTriC ODE
Ve A+C —k; D \c/\c{:%::;ﬁs by T 1
€k BoF oo 5 Coninuous
vi F+F =k, B reactions Kk, l T
N Vi | Vo | V3 | Vs A Jl\ C Discrete
Quantity Al-1]-1 Chemistry
changes X)) B|-1 1 kl ‘
Stoichiometric ol|c|2]|-1]-1 CTMC
matrix 8_ D 1
KRa‘re laws 0 E 1 B C y
F 1]-2 3
d[X]/dt = NI / x ‘k4\F<i, E
Set a rate law for each reaction
d[A]/dT - —ll - l2 Read the concentration changes (Degradation/Hetero/Homeo)
d[B]/d-r - _|1 + |4 from the rows |
-
d[C]/dT - 2'1 - I2 - |3 I1 kl[A][B] I: rate laws
d[D]/dt = |, E.g. d[A]/dt = l, k,[A][C]
d[EV/dt = I, k[ A[B] - K [AT[C] T kiC]
dIF)/dt = I, - 21, ] K[FF




From Processes to ODEs via Chemistry!

Al
i

o 900xA, 500xB, 100xC

directive sample 0.03 1000
directive plot A(): B(): €()

new a@1.0:chan new b@1.0:chan new c@1.0:chan
let A() = do la;A() or ?b; B()
and B() = do b;B() or 2¢; C()
and €() = do lc;C() or ?2a; A()

run (900 of A() | 500 of B() | 100 of C())

o . D)
A = !G(S),A @® ?b(s),B

B = Ib(s),B ) ?C(S)JC

\C = !C(S)JC ) ?G(S);A/

[A+B —SB+B

continuous_sys_generator

B+C —sC+C
\C+A —S A+A

(d[A]/dt = -s[A][B]+s[C][A]
d[B]/dt = -s[B][C]+*S[A][B]
d[C)/dt = -s[C[Al+s[B][C]

interval/step [0:0.001:20.0]

(A) dx1/dt = - x1*x2 + x3*x1 0.9
(B) dx2/dt = - x2*x3 + x1*x2 05
©) dx3/dt = - x3*x1 + x2*x3 0.1

ODE = ODE
1 A
Continuous
Chemistry
l T Process
Algebra
Discrete
Chemistry
v v
CTMC — CTMC




Epidemics

Beyond Chemical Interactions
to Population Interactions

Kermack, W. O. and McKendrick, A. 6. "A Contribution to the Mathematical
Theory of Epidemics." Proc. Roy. Soc. Lond. A 115,700-721, 1927.

http://mathworld.wolfram.com/Kermack-McKendrickModel.html



Epidemics

directive sample 500.0 1000
directive plot Recovered(); Susceptible(); Infected()

“nfCCT ?ianCT hew infect @0.001:chan()

val recover = 0.03
. let Recovered() =
SUSCCP"" ble ‘ > ')infecT%nfeCTed ?infect; Recovered()

and Susceptible() =
@recover sinfect: Infected()

and Infected() =
Recovered do linfect; Infected()
or ?infect; Infected()
. or delay@recover; Recovered()
?infect

run (200 of Susceptible() | 2 of Infected())

25

Recovered() —— Susceptible()

Infected()
Developing the Use of Process Algebra in the

Derivation and Analysis of Mathematical Models 200
of Infectious Disease

150
R. Norman and C. Shankland
Department of Computing Science and Mathematics, University of Stirling, UK.
{ces,ran}@cs.stir.ac.uk 100
50 -

Abstract. We introduce a series of descriptions of disease spread using
the process algebra WSCCS and compare the derived mean field equa-
tions with the traditional ordinary differential equation model. Even the
preliminary work presented here brings to light interesting theoretical 0 T T T
questions about the “best” way to defined the model.

0 50 100 150 200




Differentiating

Processes!

. -
S= ?l(T),I

~N

J

(S+T ST +T)

T+T >WT +T - “useless”

I >R ) reactions
\R + T 5TR + ]:/

[S]° = -ty[S][I]

[I]° = ty[S][I]-r[I]

[R]* = r[I]

Automata % =0l

produce the = IS

standard ODEs! % =47

{the Kermack-McEendrick, or SIE model)|

ODE

2601

200+

1601

100

50 1

Infected()
Suzceptible
Recovered()

SPiM

S =il

£=0.001 r=0.03
5,=200 [,=2

0 200
) Cell Designer
= D Sign
v=1.0
S+I->8I+1
I->rR
t=0.001 r=0.03
280

200

180+

100+

a0

L . L
0 a0 100 150 200

Matlab
continuous_sys_generator

S* = -tgSI
I* = tgSI-r1
R*=rl
t=0.001 r=0.03
S,=200/g
I,=2/g




Simplified Model

not useless!
linfect

Susceptible C ‘>mfecTQ> Infected

directive sample 500.0 1000

directive plot Recovered(); Susceptible(); Infected()

new infect @0.001:chan()
val recover = 0.03

let Recovered() =

0

and Susceptible() =
?infect; Infected()

and Infected() =
do linfect; Infected()
or delay@recover; Recovered()

run (200 of Susceptible() | 2 of Infected())

25

200

150

100

50

0

Recovered()

useless

Not totally obvious
that one cou/d have
simplified the
automata model.

Susceptible()

Infected()

50 100 150 200

@ . )
S = ?'(T)II

I-= Il(.r),I @® Tr.;R

R=0 Y,

(S+T NI +T
kIe’“R

([S] = -ty[S][T]
[T]* = +[S][T]-r[I]

[RT" = [}

Same ODE, hence
equivalent
automata models.



Beyond Simple Automata
to Unbounded State
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Predator-Prey

snun®
“‘ I‘.....

]

¢ um

Herbivor  : x,

0.’
' 2cull
@predation |
»leull
Carnivor
-...‘o
@mortality

Simulation: Halted, Time = 0.343410 {317 points at 0.0068489 simTimefsysTime)

:: @breeding

Carnivar()
Herbivard

Flotting: Live

directive sample 1.0 1000
directive plot Carnivor(); Herbivor()

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =
do delay@breeding; (Herbivor() | Herbivor())
or ?2cull; ()

and Carnivor() =
do delay@mortality:; ()
or leull; (Carnivor() | Carnivor())

run 100 of Herbivor()
run 100 of Carnivor()

An unbounded
state system!



Lotka-Volterra in Matlab

H-= T (HlH) @ ?c(p),'O
C= ’Cm,'o @ !C(p);(C|C)
#Ho, #C,

(HobH+H )
c—-m0

H+C - C+C
[H]o = #Ho/g
[Clo = #Co/3

- J

[H]* = b[H]-pg[H][C]
[C]° = -m[C]+pg[H][C]
[Hlo = #Ho/g
[Clo = #Co/8

900

]

700

600

500

400

300

200

100

i

m=100.0
b=300.0

p=1.0

g=1.0

#H, = 100
#C, = 100

Carnivar)
Herbivor

SPikA

L

Extinction /

700

BOO

500 [

400

300

200

100

0

directive sample 0.35 1000
directive plot Carnivor(); Herbivor()

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =
do delay@breeding; (Herbivor() | Herbivor())
or 2cull; )

and Carnivor() =
do delay@mortality; ()
or leull; (Carnivor() | Carnivor())

run 100 of Herbivor()
run 100 of Carnivor()

250 300 350 400

No extinction

Which one is the "right prediction"?
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Chemical Parametric Form (CPF)

E = Xi(p)=My, ... X (p,)=M, Reagents (n20)
M :=p.P,® . ®p,P, Molecules (n20)
P u=Xip) | .. | X (py) Solutions (n20)
p ==1. ?n(p) In(p) Interactions

‘1 b I with initial conditions

® is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = O|P = P)
and null molecule (M®0 = 0®M = M) (t,:P = 0)

Not bounded-state systems. X; are distinct in E, p are vectors of names
Not finite-control systems p are vectors of distinct names when in binding position

e . Each free name n in E is assigned a fixed rate r:
But still flnl’re—speues sys’rems. written either ng,, or repe(n)=r.

A translation from CPF to CGF exists
(expanding all possible instantiation of parameters from the initial conditions)

An incremental translation algorithm exists
(expanding on demand from initial conditions)
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CPF to CGF: Handling Parameters

Consider first the CPF subset with no communication (pure ?n, In).

Grounding (replace parameters with constants) E = Xi(p)=My, ..., X(pn)=M,

where X/p is a hame in bijection with <X p> M ::= p;P; ® .. ® p,.P,
hX/pi T '
(eac p is Seen as a separate species) P = X,(p) | - | X(p,)

/(pl'Pl sl o pn,Pn) =def pl'/(Pl) @D . @D pn,/(Pn) p =T, ?n In
/(Xi(P) | o | Xa(Pr)) =gt X1/P1 | - | Xi/py

Let N be the set of free names occurring in E.

E; is the Parametric Explosion of E (still a finite species system)
computed by replacing parameters with all combinations of free names in E

E. := {(X/q = /(M{p<—q})) s.t. (X(p) = M) € E and q e N#p}
Peli= /P (simply ground the given initial conditions once)

Es is a CGF! To obtain the chemical reactions Cp,(E), just compute Ch (E;)

Cp(EP) = Ch(E;Ps) the chemical system of a CPF



CPF to CGF: Handling Communication

Grounding (replace parameters with constants) E = Xy(p)My, .., X.(p)=M

Just one main change: now also convert each input parameter M = p P ® .. @ p.P,
into a ground choice of all possible inputs
P u=Xi(p) | .. | Xi(py)

N is the set of free names in E P
#p is the length of p ol it
n/p is a name in bijection with <n,p>

X/p is a name in bijection with <X p>

(each X/p is seen as a separate species)

/N(TeP) = T /\(P)

/N(n(P):P) = In/py /\(P)

/\2ney(P)P) = ©(qeN™) of 2n/qqy /\(Plpe-q))
/NPLPL @ .. ® pPy) = /(PyPr) © .. @ /\(PrPr)
/NP | | Xa(pe)) = Xo/py | | X/

E; is again the Parametric Explosion of E

E. := {(X/q = /(M{p-q})) s.t. (X(p) = M) € Eand q e N##}  Eg is a again a CGF!
PG = /N(P) (simply ground the given initial conditions once)

Cp,(EP) = Ch(E;Ps) the chemical system of a CPF
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The Repressilator

X

— —
Neg
L [yl

Neg Neg

Parametric representation

R.Blossey, L.Cardelli, A.Phillips:

Compositionality, Stochasticity and
An d Yet It Moves Cooperativity in Dynamic Models of

Gene Regulation (HFSP Journal)

A fine stochastic oscillator over
i, @ wide range of parameters.

123 ta

[14]
Ic

615

Pi

0
53947 40054 Pausad

Sirnulation: Time = 53610179900 (1070 points at 34439 simTimefsysTime and halted)

/d[Neg/x,y1/dt = -r[Tr/x][Neg/x,y] + h[Inh/5\;

Neg(a,b) = ?a; Inh(a,b) @ t.; (Tr(b) | Neg(a,b)) d[Neg/y z)/dt = -r[Tr/yl[Neg/y.z] + hlInh/y:z}f

Inh(a,b) = 7,; Neg(a,b)
Tr(b)=1b; Tr(b)® 1, O

Neg (X)) | Neg(y(.ze) | Neg(z(y X))

d[Neg/z,x]/dt = -r[Tr/z][Neg/z,x] + h[Inh/Zx:
d[Inh/x,y]/dt = r[Tr/x][Neg/x,y] - h[Inh/x yi=
d[Inh/y,z]/dt = r[Tr/y][Neg/y,z] - h[Inh/y,z]"" "™
d[Inh/z,x]/dt = r[Tr/z][Neg/z x] - h[Inh/z x]
d[Tr/x]/dt = e[Neg/z,x] - g[Tr/x]

¢

d[Tr/y]/dt = e[Neg/x,y] - g[Tr/y]

Neg/x,y —¢ Tr/y + Neg/xy
Neg/y,z —¢ Tr/z + Neg/y,z
Neg/z,x —¢ Tr/x + Neg/z x

Tr/x + Neg/x,y —»" Tr/x + Inh/xy
Tr/y + Neg/y,z —»" Tr/y + Inh/y,z
Tr/z + Neg/z,x —" Tr/z + Inh/z x
Inh/x)y —" Neg/xy

Inh/y,z »" Neg/y,z

Inh/z,x —" Neg/z x

Tr/x —20

Tr/y —20

Tr/z —20
KNeg/x,y + Neg/y,z + Neg/z,x

@Tr/z]/d‘r = e[Neg/y,z] - g[Tr/z] /

simplifying (N is the quantity
of each of the 3 gates) o
G[Neg/x,y]/d’r = hN - (h+r[Tr/x])[Neg/x,y\] ol
d[Neg/y,z]/dt = hN - (h+r[Tr/y])[Neg/y,z] of
d[Neg/z,x]/dt = hN - (h+r[Tr/z])[Neg/z,x] =,
d[Tr/x]/dt = e[Neg/z,x] - g[Tr/x] md’

an oscillator!

Analytically not j

/  Matlab

continuous_sys_generator |

d[Tr/y]/dt = e[Neg/x,y] - g[Tr/y] 0
@Tr‘/z]/d.‘- = e[Neg/Y'Z] - g[Tr/Z] ) nnnnnnnnnnnn [0:10:20000) N=1, r=1.0, e=0.1, h=0.001, g=0.001

(Neg/xy) dx1/dt = 0,001 - (0.001 + x4)*x1 10
(Neg/xy) dx2/dt = 0.001 - (0.001 + x5)*x2 10
(Neg/xy) dx3/dt = 0,001 - (0.001 + x6)*x3 10
(Tr/x) dx4/dt = 0.1%x3 - 0.001*x4 1000
(Tr/y) dx5/dt = 0.1*x1 - 0.001*x5 0

o 500 1000 1600 2000

(Tr/2) dx6/dt = 0.1*x2 - 0.001*x6 0

2500



CPF to CGF Iterative Algorithm. Ex: Neg(x,X)

o iteration 3 -----
Neg(a,b) = ?a; Inh(a,b) ® t.; (Tr(b) | Neg(a,b)) C := {Neg/x,x —»¢ Tr/x + Neg/x x
Inh(a,b) = t;; Neg(a,b) Tr/x —40
Tr(b)=1b; Tr(b) ® t,; O Tr/x + Neg/x,x =" Tr/x + Inh/x x
Neg(x,x) Inh/x,x —" Neg/x x}
----- initialization ----- E.= no change
E.= {Neg/x x =2x; Inh/xx ® t.; (Tr/x | Neg/xx)}  ---—-- termination -----
----- iteration 1 ----- /Neg/x,x —€ Tr/x + Neg/x ,x \
C := {Neg/x,x —¢ Tr/x + Neg/x ,x } Tr/x -0
E.:= {Neg/x x = ?2x; Inh/xx ® t.; (Tr/x | Neg/x x) Tr/x + Neg/x,x =" Tr/x + Inh/x x
Tr/x = Ix; Tr/x @ tg; 0} Inh/x,x —" Neg/x x
----- iteration 2 ----- \Neg/x,x /
C := {Neg/x,x —¢ Tr/x + Neg/x x
Tr/x =40

Tr/x + Neg/x,x —"™ Tr/x + Inh/x x }

E.:= {Neg/x x = ?2x; Inh/xx ® t.; (Tr/x | Neg/x x)
Tr/x=Ix; Tr/x®ty 0
Inh/x,x = t,; Neg/x x}
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Choice Law by ODEs

:
®'“"c]}'* @@
A=7BoB A=7,,8]
} l
[Ae’\ B J [Ae"*“ B]
A—H B
| |

[AT = -A[A] - u[A] _ [AT* = -(A+p)[A]
[B] = A[A] + p[A] [B]* = (A+p)[A]




Idle Interaction Law by ODEs

..........

It may seem like A should
decrease half as fast,

{A - QCBJ {A DC A® 7C B but NO! Two.ways to explain:

-State A is memoryless
IC C of any past idling.

- Activity on c is double

directive sample 6.0 1000
directive plot A()
directive sample 6.0 1000
new c@1.0:chan directive plot A()
let A() = 2¢; B() new c@1.0:chan
and B() = ()
A+C 3 r B+C and () = lc: €0 +C 3 r A+C LiLAB(())Ztg?C; B() or 2¢: AQ
run (C() | 1000 of A()) and () = c; €O
A+C —"B+C

[A] = -r[AlC]) - [Al
[B]° = r[A][C] fiik [B] = r[A][C]
[C]'=0 [C] =

run (C() | 1000 of A())

0000000




Hermanns: Interactive

StOChaStiC I nterleavi ng Markov Chains. Sec 4.1.2

B | 1D = 7.(B|1,.D)®r1,(r,;B | D)

. - - directive sample 4.0 10000
Ex' A_ 101 IJ_ 20 @1 O directive pIoTpA(); B(); ¢(); DO
let A() = delay@1.0; B()
and B() = ()
[A1],=1000 let €() = delay@2.0; D()
0 @2.0 Q and D() = ()
[c .] 21000 ‘ run 1000 of (A() | ()
110~

directive sample 4.0 10000

e directive plot
== ?YA; B(); 2YC; DO): Y(O: AQ: €()
@10 @1 O 1000 e new YA@1.0:chan new YC@1.0:chan
Q 750 \ G let AQ) = do delay@1.0; B() or >vA

500 f 3 and B() = ()

_ 250 / let C() = do delay@2.0; D() or 2vC
[y]o-locgz 0 @20 ¥ @ @ . and D() = ()
' e ’ ! let Y() =

do delay@1.0; (B() | €())

or delay@2.0; (A() | D()
or ?YA or ?2YC

Amazingly, the B's and the D's from the two ZIECREEI S

branches sum up to exponential distributions



Stochastic Interleaving Law by ODEs

Bl t.D = 7.(B|1.D)® 1,

Want to show that B and D
on both sides have the
"same behavior” (equal

(t.B | D)

quantities of B and D
produced at all times)

ALYILY] )
[A5]° = WY ]-ALA,]
[BI* = ALY}FA[A,]
[Co)° = ALY -u[C)]

(D] = ulYI+u(C,]

(A;=7B (V=148 1 C;) @ 1,(A; | D)
¢, =1.D C,=1.D
XA, | nxC, A, =1,.B
\.nxY
(A, —'B (y v B+C, ) (IY]'=
C,—->"D Y SHA,+D
\[A1]o = [Ci]o = n/y ¢, —"D ->
A, >'B
) D=y ) o
[A]" = -ALA;] ([y+A,] = ,
[B]* = A[A4] -9 [B]* = ALY+A;] E
[Ci]° = -u[Cy] = [Y+C,]° = -u[Y+C,] =
[D] = uléi] \[DI" = u[Y+C,] -

ALY+A1 | IY+A,T = [YI+[A,T

-ALY J-ulY JFulY ]-A[A,]

-ALYJ-ALA, ] :
[Y+A,] decays exponen‘riallyl .

[B] and [D] have equal time evolutions on the two sides provided that [A;]=[Y+A,] and [C;]=[Y+C,].

Moreover we have [A;], = [C;]o = [Y]o = n/yand [A,], = [C,], = O since only Y is present on the
r'.h.s., so that [AI]O = [y+A2]o and [CI]O = [y+CZ]O' Slmllar'ly [B]o = [D]o = 0.

Therefore the final ODEs have the same initial conditions for all variables, and have the same
relationships between variables, and in particular between [B] and [D].

So, for example, if we run a stochastic simulation of

the left hand side with 1000*A1 and 1000*C1, we obtain the

same curves for B and D than a stochastic simulation of the right hand side with 1000*Y.
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Conclusions

e From Processes to ODEs

o A way of relating automata-like models to
classical ODE-based models

o A way of investigating difference between
discrete (stochastic) and continuous semantics

o A compositional language (CPF) for describing
systems of ODEs



