
Strand Algebras
for DNA Computing

Luca CardelliLuca Cardelli

Microsoft Research

DNA 15 Conference

Fayetteville, 2009-06-10

http://lucacardelli.name

How Process Algebra fits in DNA Computing

● Electronics has electrons

o All electrons are the same

o All you can do is see if you have few (‘False’) or lots (‘True’) of electrons

o Hence Boolean logic is at the basis of digital circuit design

o Symbolic and numeric computation has to be encoded above that

o But mostly we want to compute with symbols and numbers, not with Booleans

● DNA computing has symbols (DNA words)

22009-06-11Luca Cardelli 22009-06-11 22009-06-11Luca Cardelli

● DNA computing has symbols (DNA words)

o DNA words are not all the same

o Symbolic computation can be done directly

o We can also directly use molecular concurrency

● Process Algebra as the ‘Boolean Algebra’ of DNA Computing

o What are the ‘gates’ of symbolic concurrent computation?

o That’s what Process Algebra is about

o (Process Algebra comes from the theory of concurrent systems)

DNA

Molecules as Automata (DNA14 Invited Talk)

=

Continuous
Chemistry

Discrete

Process
Algebra

ODE ODE

Continuous-state Semantics
(Mass Action Kinetics)

The Real
Wet Stuff

?

32009-06-11Luca Cardelli 32009-06-11 32009-06-11Luca Cardelli

DNA

D. Soloveichik, G. Seelig, E. Winfree. DNA
as a Universal Substrate for Chemical
Kinetics. Proc. DNA14. =

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)

DNA Compilation

Discrete
Chemistry

Interacting
Automata

Higher-level
languages

High level
languages
(TBD)

Low level
languages

Petri
Nets

Separating Circuit Design from Gate Design

Boolean
Networks

Finite State
Automata

Circuit Design Space

42009-06-11Luca Cardelli 42009-06-11 42009-06-11Luca Cardelli

DNA
Sequence
Design

Circuit Design Space

DNA Compilation

Strand
Algebra

Seesaw
Gates

High level
languages
(TBD)

Low level
languages

…

Separating Circuit Design from Gate Design

(e.g. half-adders from

Interacting
Automata

Circuit Design

Discrete
Chemistry

Higher-level
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

52009-06-11Luca Cardelli 52009-06-11 52009-06-11Luca Cardelli

(e.g. half-adders from
Boolean gates)

Sequence
Design

Gate Design Space

DNA

DNA Compilation

Verification of DNA

gate implementation

Separating Circuit Design from Gate Design

High level
languages
(TBD)

Low level
languages

Seesaw
Gates

…
Strand

Algebra

Interacting
Automata

Circuit Design

(e.g. half-adders from

Discrete
Chemistry

Higher-level
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

62009-06-11Luca Cardelli 62009-06-11 62009-06-11Luca Cardelli

DNA

gate implementation

Strand
Displacement

Cardelli and Phillips,

A Programming Language for

Composable DNA Circuits.

Royal Society Interface Journal

Sequence
Design

(e.g. Boolean gates

from transistors)

Gate Design

(e.g. half-adders from
Boolean gates)

DNA Compilation

Separating Circuit Design from Gate Design

High level
languages
(TBD)

Low level
languages

Seesaw
Gates

…
Strand

Algebra

Interacting
Automata

Circuit Design

(e.g. half-adders from

Discrete
Chemistry

Higher-level
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

72009-06-11Luca Cardelli 72009-06-11 72009-06-11Luca Cardelli

DNA

Other DNA
Mechanisms

Other DNA
Mechanisms

Strand
Displacement

Sequence
Design

(e.g. Boolean gates

from transistors)

Gate Design

(e.g. half-adders from
Boolean gates)

DNA Compilation

Separating Circuit Design from Gate Design

High level
languages
(TBD)

Low level
languages

Seesaw
Gates

…
Strand

Algebra

Interacting
Automata

Circuit Design

(e.g. half-adders from

Discrete
Chemistry

Higher-level
languages

Petri
Nets

Boolean
Networks

Finite State
Automata

82009-06-11Luca Cardelli 82009-06-11 82009-06-11Luca Cardelli

Sequence
Design

Rest of the talk: bottom up

Other DNA
Mechanisms

Other DNA
Mechanisms

Strand
Displacement (e.g. Boolean gates

from transistors)

Gate Design

(e.g. half-adders from
Boolean gates)

DNA

Gate Elements: Short and Long DNA Segments

Short (red)

segments

92009-06-11Luca Cardelli 92009-06-11 92009-06-11Luca Cardelli

Long (black)

segments

Gate Elements: Basic Mechanisms

toehold

Irreversible

102009-06-11Luca Cardelli 102009-06-11 102009-06-11Luca Cardelli

Reversible

● Signals “x” are single-stranded and ‘positive’

● This 3-segment signal representation is original to this work, it is based

on the 4-segment signals of D. Soloveichik, G. Seelig, E. Winfree. Proc.

DNA14, but leads to simpler and more regular gate structures

Gate Elements: Signals and Gates

xh = history xt,xb = signal identity for x

xt = toehold

xb = binding

112009-06-11Luca Cardelli 112009-06-11 112009-06-11Luca Cardelli

● Gate backbones are double-stranded, except for ‘negative’ toeholds.

● Separation of strands and gates helps the DNA realization, as one can use

3-letter alphabets (ATC/ATG) for each strand, minimizing secondary

structure and entanglement.

Circuit Elements: x.[y,z] Fork Gate

● A Fork signal-processing gate takes a signal x and produces two signals y,z

according to the reaction x | x.[y,z] → y | z

122009-06-11Luca Cardelli 122009-06-11 122009-06-11Luca Cardelli

Gb,Gt (gate backbone and trigger) form the gate.

Any history segment that is not determined by the gate

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an

input or output signal is taken to be ‘fresh’ (globally unique

for the gate), to avoid possible interferences.

● A Join signal-processing gate takes both signals x,y and produces a signal

z according to the reaction x | y | [x,y].z → z

Circuit Elements: [x,y].z Join Gate (function)

garbage!!

132009-06-11Luca Cardelli 132009-06-11 132009-06-11Luca Cardelli

The garbage r1 and r2 must be collected (after the gate has fired) to avoid

accumulation. This can be achieved by a similar scheme taking r1,r2 as input signals.

[x1,..,xn].[y1,..,ym] General Join/Fork Gate

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym

142009-06-11Luca Cardelli 142009-06-11 142009-06-11Luca Cardelli

Garbage collection

Strand Algebra

P ::= x ⋮ [x1,..,xn].[y1,..,ym] ⋮ 0 ⋮ P|P ⋮ P* n≥1, m≥0

x is a signal

[x1,..,xn].[y1,..,ym] is a gate

0 is an inert solution

P|P is parallel composition of signals and gates

P* is a population (multiset) of signals and gates

152009-06-11Luca Cardelli 152009-06-11 152009-06-11Luca Cardelli

Reaction Rule

Auxiliary rules (axioms of diluted well-mixed solutions)

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym

P → P’ ⇒ P | P” → P’| P” Dilution

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Well Mixing

Where ≡ is a congruence relation (syntactical ‘chemical mixing’)
with P* ≡ P | P* for unbounded populations.

Compiling Strand Algebra to DNA

● compile(x) =

● compile([x1,..,xn].[y1,..,ym]) =

P ::= x ⋮ [x1,..,xn].[y1,..,ym] ⋮ 0 ⋮ P|P ⋮ P* n≥1, m≥0

162009-06-11Luca Cardelli 162009-06-11 162009-06-11Luca Cardelli

● compile(0) = empty solution

● compile(P | P’) = mix(compile(P), compile(P’))

● compile(P*) = population(compile(P))

Boolean Networks

Boolean Networks to Strand Algebra

172009-06-11Luca Cardelli 172009-06-11 172009-06-11Luca Cardelli

This encoding is compositional, and can encode any Boolean network:

- multi-stage networks can be assembled (combinatorial logic)

- network loops are allowed (sequential logic)

Petri Nets

Transitions as Gates
Place markings as Signals

Petri Nets to Strand Algebra

182009-06-11Luca Cardelli 182009-06-11 182009-06-11Luca Cardelli

Finite State Automata

FSA to Strand Algebra

192009-06-11Luca Cardelli 192009-06-11 192009-06-11Luca Cardelli

Input strings

Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |

202009-06-11Luca Cardelli 202009-06-11 202009-06-11Luca Cardelli

A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | A | B | C

This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |

212009-06-11Luca Cardelli 212009-06-11 212009-06-11Luca Cardelli

A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | B | B | C

This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |

222009-06-11Luca Cardelli 222009-06-11 222009-06-11Luca Cardelli

A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | B | C | C

This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |

232009-06-11Luca Cardelli 232009-06-11 232009-06-11Luca Cardelli

A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | A | B | C

This is a uniform population of identical automata,

but heterogeneous populations of interacting automata can be similarly handled.

More in the Paper

● Stochastic strand algebra

o Matches the stochastic semantics of interacting automata

o Uses a technique for implementing constant buffered populations,

to replace P* with finite populations

● Nested strand algebra

o An higher-level language (with nested expressions)

o A compilation algorithm into the basic strand algebra

242009-06-11Luca Cardelli 242009-06-11 242009-06-11Luca Cardelli

o A compilation algorithm into the basic strand algebra

Conclusions

● Strand algebra is an intermediate language for DNA compilation

o It has its own abstract kinetics

o Supports the compilation of multiple higher-level languages

● Boolean Networks

● Finite State Automata

● Petri Nets

● Interacting Automata

● Etc.?

o Into (possibly) multiple lower-level DNA architectures

252009-06-11Luca Cardelli 252009-06-11 252009-06-11Luca Cardelli

o Into (possibly) multiple lower-level DNA architectures

● Strand displacement

● Etc.?

● Acknowledgments

o The DNA 14 organizers for inviting me and providing stimulus for this work.

o Extensive discussions with Lulu Qian, David Soloveichik and Erik Winfree on

possible gate designs (about 15 of them!).

o John Reif and Urmi Majumder for working on the problem.

