
Strand Algebras 
for DNA Computing

Luca CardelliLuca Cardelli

Microsoft Research

DNA 15 Conference

Fayetteville, 2009-06-10

http://lucacardelli.name



How Process Algebra fits in DNA Computing

● Electronics has electrons

o All electrons are the same

o All you can do is see if you have few (‘False’) or lots (‘True’) of electrons

o Hence Boolean logic is at the basis of digital circuit design

o Symbolic and numeric computation has to be encoded above that

o But mostly we want to compute with symbols and numbers, not with Booleans

● DNA computing has symbols (DNA words)
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● DNA computing has symbols (DNA words)

o DNA words are not all the same

o Symbolic computation can be done directly

o We can also directly use molecular concurrency

● Process Algebra as the ‘Boolean Algebra’ of DNA Computing

o What are the ‘gates’ of symbolic concurrent computation?

o That’s what Process Algebra is about

o (Process Algebra comes from the theory of concurrent systems)
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DNA

D. Soloveichik, G. Seelig, E. Winfree. DNA 
as a Universal Substrate for Chemical 
Kinetics. Proc. DNA14. =

Discrete
Chemistry

CTMC CTMC

Discrete-state Semantics

(Chemical Master Equation)

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)
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DNA Compilation
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DNA
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Cardelli and Phillips,

A Programming Language for 

Composable DNA Circuits. 

Royal Society Interface Journal
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Sequence
Design

Rest of the talk: bottom up
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Gate Elements: Short and Long DNA Segments

Short (red)

segments

92009-06-11Luca Cardelli 92009-06-11 92009-06-11Luca Cardelli

Long (black)

segments



Gate Elements: Basic Mechanisms

toehold

Irreversible
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Reversible



● Signals “x” are single-stranded and ‘positive’

● This 3-segment signal representation is original to this work, it is based 

on the 4-segment signals of D. Soloveichik, G. Seelig, E. Winfree. Proc. 

DNA14, but leads to simpler and more regular gate structures

Gate Elements: Signals and Gates

xh = history xt,xb = signal identity for x

xt = toehold

xb = binding
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● Gate backbones are double-stranded, except for ‘negative’ toeholds.

● Separation of strands and gates helps the DNA realization, as one can use 

3-letter alphabets (ATC/ATG) for each strand, minimizing secondary 

structure and entanglement.



Circuit Elements: x.[y,z] Fork Gate

● A Fork signal-processing gate takes a signal x and produces two signals y,z

according to the reaction  x | x.[y,z] → y | z
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Gb,Gt (gate backbone and trigger) form the gate.

Any history segment that is not determined by the gate 

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an 

input or output signal is taken to be ‘fresh’ (globally unique 

for the gate), to avoid possible interferences.



● A Join signal-processing gate takes both signals x,y and produces a signal 

z according to the reaction  x | y | [x,y].z → z

Circuit Elements: [x,y].z Join Gate (function)

garbage!!

132009-06-11Luca Cardelli 132009-06-11 132009-06-11Luca Cardelli

The garbage r1 and r2 must be collected (after the gate has fired) to avoid 

accumulation. This can be achieved by a similar scheme taking r1,r2 as input signals.



[x1,..,xn].[y1,..,ym] General Join/Fork Gate

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym
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Garbage collection



Strand Algebra

P   ::=   x  ⋮ [x1,..,xn].[y1,..,ym]  ⋮ 0  ⋮ P|P  ⋮ P*          n≥1, m≥0

x is a signal

[x1,..,xn].[y1,..,ym] is a gate

0 is an inert solution

P|P is parallel composition of signals and gates

P* is a population (multiset) of signals and gates
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Reaction Rule

Auxiliary rules (axioms of diluted well-mixed solutions)

x1 | .. | xn | [x1,..,xn].[y1,..,ym]  → y1 | .. | ym

P  → P’ ⇒ P | P”  → P’| P” Dilution

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Well Mixing

Where ≡ is a congruence relation (syntactical ‘chemical mixing’)
with P* ≡ P | P* for unbounded populations.



Compiling Strand Algebra to DNA

● compile(x) = 

● compile([x1,..,xn].[y1,..,ym]) =

P   ::=   x  ⋮ [x1,..,xn].[y1,..,ym]  ⋮ 0  ⋮ P|P  ⋮ P*          n≥1, m≥0
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● compile(0) =   empty solution

● compile(P | P’) =  mix(compile(P), compile(P’))

● compile(P*) =  population(compile(P))



Boolean Networks

Boolean Networks to Strand Algebra
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This encoding is compositional, and can encode any Boolean network:

- multi-stage networks can be assembled (combinatorial logic)

- network loops are allowed (sequential logic)



Petri Nets

Transitions as Gates
Place markings as Signals 

Petri Nets to Strand Algebra
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Finite State Automata

FSA to Strand Algebra
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Input strings



Interacting Automata
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900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |

202009-06-11Luca Cardelli 202009-06-11 202009-06-11Luca Cardelli

A B
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?c
?a

!b?b

C

A B

!a

?c
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!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | A | B | C

This is a uniform population of identical automata, 

but heterogeneous populations of interacting automata can be similarly handled. 
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More in the Paper

● Stochastic strand algebra

o Matches the stochastic semantics of interacting automata

o Uses a technique for implementing constant buffered populations, 

to replace P* with finite populations

● Nested strand algebra

o An higher-level language (with nested expressions)

o A compilation algorithm into the basic strand algebra
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o A compilation algorithm into the basic strand algebra



Conclusions

● Strand algebra is an intermediate language for DNA compilation

o It has its own abstract kinetics

o Supports the compilation of multiple higher-level languages

● Boolean Networks

● Finite State Automata

● Petri Nets

● Interacting Automata

● Etc.?

o Into (possibly) multiple lower-level DNA architectures
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o Into (possibly) multiple lower-level DNA architectures

● Strand displacement

● Etc.?
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