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Calbiochem’ MAPK Family Pathways

Cellular Computation

» No survival without computation!
+ Finding food
- Avoiding predators
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- How do cells compute?
+ Clearly doing “information processing”

- What are their computational principles? ™. MAPKK Pase -2

...................

ouTPUT

Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang
and James E. Ferrell, Jr,, 1996, Proc. Natl_ Acad. Sci. USA, 93, 10078-10083.




Abstract Machines of Biochemistry

Hold receptors,
host reactions
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Extracellular Features




Bioinformatics View (Data Structures)
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Systems Biology View (Networks)
L. L

Gene
Machine

Gene Regulatory
Networks

.......

Biochemical
Networks

Transport
Networks

[ORCH

Protein
Machine

Membrane
Machine

ssssssssss
nnnnnnn




Gene ,°, ..................... :

Molecular Interaction
Maps
Transport Networks

o /Proteln Membrane\

Machme Machlne

ooooooooooo
'''''
°

These 3 machines
are Turing powerful!




More concretely

- Give substance to the claim that
"cells compute”
- Yes, but what do they compute?

- Catch nature red-handed in the act
of running a computational task

- Something that a computer scientist
would recognize as an algorithm




Chemical Algorithms




Can Chemistry Compute?

- If we believe that biology can do computation...

- It must be somehow based on chemistry

+ SO, can chemistry compute, and how?

- That is in itself a very interesting question with non-trivial answers




Chemical Programming Examples

specification

Y .= min(X1, X2)

Y = max(X1, X2)

program

XT+ X2 ->Y

X1->1LT+Y
X2 ->L12+Y
LT+ L2 ->K
Y +K->0

max(X1,X2)=
(XT+X2)-min(X1,X2)

(but is not computed
‘sequentially”: it is a form
of concurrent computation)
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A Consensus Problem

- Population Consensus

- Given two populations of x and y "agents”
- we want them to “reach consensus”

+ by converting all agents to x or to y S,DeC[ﬁCC]nOH
depending on which population was in majority initially .
XY = X+Y, 0 if Xo2Y,

- Population Protocols Model XY =0, X+Y if Yo2Xg

- Finite-state identity-free agents (molecules) interact in
randomly chosen pairs (= stochastic symmetry breaking)

- Each interaction (collision) can result in state changes
- Complete connectivity, no centralized control (well-mixed solution)

11




A Consensus Algorithm
- Approximate Majority (AM) Algorithm catalysis -0

- Uses a third "undecided” population b l l J
- Disagreements cause agents to become undecided X — b=y
- Undecided agents agree with any non-undecided agent r T - T _____
10000y 10000 + r +
8000 Q M 8000 h . | —___)f__________x-_j_--__x ________ I?\
cono ] N ¢ eT'Ca CY+HXTX+ B
] E reaction e
00 00 b+ X—>"Xx+X
] ] network
2000—; 2000—; b + y %r y + y
o T D:,,,,

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority
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A Biological Implementation

Approximate Majority (AM)

T :
1) Bistable
Even when initially x=y (stochastically)

2) Fast (asymptotically optimal)
O(log n) convergence time

3) Robust to perturbation
above a threshold, initial majority wins whp

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority 2007

Epigenetic Switch
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Figure 1. Basic Ingredients of the Model

Theoretical Analysis of Epigenetic
Cell Memory by Nucleosome Modification
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Here We Got Lucky

- We can claim that the epigenetic switch is a direct I
biological implementation of an algorithm P té'\T@i

- Although we may have to qualify that with some notion of
approximation of the (enzymatic) kinetics

- In most cases the biological implementation seems
more indirect or obfuscated
- "Nature (s subtle but not malicious - Einstein” Hal think again! 752
- Other implementations of Approximate Majority seem more
convoluted and... approximate

14




The Cell Cyc le Switch oot 1 Mg e

Paul Nurse

'his basic network is universal in Eukaryotes [P Nurse]

- The switching function and the basic network is the same from yeast to us.
- In particular detail, in frog eggs:

® Double positive feedback on x
unrepliosted |1 Double negative feedback on x
No feedback ony. Why 7?7

(P) E § P

@2

MPF Numerical analysis of a comprehensive model of M-phase control in

| Xenopus oocyte extracts and intact embryos
unreplicated
| Bela Novak* and John J. Tysont
DNA ! irginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0406, USA
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

oooooooooooooooooooooooo

- The function is very well-studied. But why this network structure?
- That is, why this peculiar algorithm?
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How to model “Influence”

"True” molecular interactions. “Equivalent” influence interactions.

-

b)

o3 = a) . N [Ad -
bl b AL AL @) R0 SN N
E.0vC el ‘.INH" /] g N \ \ |
LI T & _® SV
SN NN /AN

Figure 4: a) Schematic diagram of a primitive cell cycle in the reinitz framework.

Figure 3: a) Schematic diagram of a simplified SIMM model [17]. The activa-

Chemical Reaction Network « > Influence Network
I IS TR T ) LN D ) Instead of modeling basic interactions, such as binding, synthesis, and degra-
E\-(J]\-ng a pf]l’ll]’[ﬂ- € Elll\dT} otic C{H C“ : l{’ ?\I()d{'l dation of molecular components, this framework models interactions simply as
- ] i activation or inhibition. This approach also reduces the number of nodes nec-
Malte Liicken, Jotun Hein, Bela Novak essary In the network, as e.g. the inhibitor binding tightly to the activator to

form a complex, which produces phosphorylated inhibitor to be degraded un-
der catalysis by the activator, is now simply a double negative feedback loop
shown in Figure[I} This type of interaction is the basis of both aforementioned
molecular model, therefore they can both be summarized in a single Reinitz
model.
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activation =@

The Triplet Model of Influence hibiion

inhibit x
inhibition
high —x«- low = xishigh XX, — xz—-— X is low
(modiﬁed)"-.,.__I‘.‘.-'; (unmodified)
activation
activate x
Usually modeled by triplet motif

sigmoid (e.g. Hill or
Reinitz) functions

biological mechanism:
(e.g.;) multisite
phosphorylation

We model them by
4 mass action reactions over
3 species X, Xy, X5

They actually implement a
Hill function of coefficient 2:

N\ %0
Nxt
\ 2

r;=0.1
r10=10.0
rp;=0.1
1, =10.0

catalysis -o

For example:

Approximate Majority
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How to Build a Good Switch

- We need first a bistable system: one that has two distinct and stable
states. l.e., given any initial state the system must settle into one of
two states

- The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

- Finally, we need to be able to flip the switch by external inputs

18




A Bad Algorithm cotalyss o

+ Direct Competition

- X catalyzes the transformation of y into x
-y catalyzes the transformation of x into y
- when all-x or all-y, it stops

- This system has two end states, but

- Convergence to an end state is slow (a random walk)

- Any perturbation of an end state can start a random
walk to the other end state (hence not really bistable)

Yy + X — X+ X
X+ty—=Yy+y

111111
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A Good Algorithm

- Approximate Majority (AM) inhibition =
- Third, undecided, state b

- Disagreements cause agents to become undecided
- Undecided agents believe any non-undecided agent X

- With high probability, for n agents !

- The total number of interactions before converging is O(n log n)
= fast (optimal)

- The final outcome is correct if the initial disparity is w(sgrt(n) log n) o "
= solution states are robust to perturbations = N orst-cash scenarnio
- Logarithmic time bound in parallel time Koy ] SOTNG XY D=0
o N N
- Parallel time is the number of steps divided by the number of agents j::[
- In parallel time the algorithm converges with high probability in O(log n)

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust

Approximate Majority
20




An “Ugly” Algorithm: Cell Cycle Switch

activation -e

oo T2® inhibition =4
Nobel-prize

winning network i
171
— X
Obfuscation of a I/ r_T

distributed
- Is it a good algorithm? Is it bad? Lggerthm? '

- |s it optimal or suboptimal?

21




Convergence Analysis

- Switches as computational systems s b s Aty wie

4, [] I
"‘J ’ D

—iIN—uw

. L)
LI

—t— 0.00355 0 0.00710 0 0.00710

. 15000 15
Start symmetrical roxlt,
(Xo=X{=X, etc.) -

Black lines: several stochastlc simulation traces
Color: full probability distribution of small-size system
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Steady State Analysis

- Switches as dynamical systems

bias _ ; i

l l_l I}llas | J.?

Xe—Y _ ‘I'—I l__)T(T

L 7 | 1 it
SX

DC AM SC

Black lines: deterministic ODE bifurcation diagrams
Red lines: noisy stochastic simulations
Color: full probability distribution of small-size system

N
H

Yo

X - T
-]
e
o oo
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Why is CC worse than AM?

- The classical CC has an algorithmic “bug

- It works ok but never as well as AM
- Because s continuously inhibits x through z, so that x cannot fully express

1

S
| =
I__l =

X -
r _T T | - = : -
I cc F 0 «t- 002

0 <t 20 ° The corresponding cell cycle
/ : oscillator is also depressed
- So let’s fix the bug!

- Easy: let x inhibit s and t “in retaliation”
- Q: Why didn't nature fix it?

24




Nature fixed it!

- o

‘here is another known feedback loop

+ By which x suppresses s “in retaliation” via the so-called Greatwall loop
- Also, s and t happen to be the same molecule (=s)

Biological network
; _l 150000 —t,> 00025 / -
9
Pr(x,|t,)
Z _-I — weel
[ X
-[ /\ T R - (Gwl) l
S l X %, - PP2A ===— cdk/cyc
1 1
T— r —T By cdc25 —T
_T GW OO “t,- 10 © \ T
Full activation!

s and x now are antagonists: they are the two halves of the switch,
mutually inhibiting each other (through intermediaries).
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More surprisingly

- The fix makes it faster too!

- The extra feedback also speeds up the decision time of the switch,

making it about as good as the ‘optimal’ AM switch:

Conclusion:
Nature is trying as hard as it can to
implement an AM-class algorithm!

The “classical” cell cycle switch is only
half of the picture: the extra feedback
completes it algorithmically.

15000

<_m>< -

AM
GW
CcC

T
<t

—
0.004
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Publications
- Our paper appeared:

+ Suggesting GW is a better switch

[ /_l\z {_l
than CC. September 2012 ]

Another paper that
same week:

- Showing experimentally that the
Greatwall loop is a necessary

component of the switch, i.e. the
not-as-good-as-AM network
has been ‘refuted’

SCIENTIFIC 02 ¢
REPLIRTS tant AN

@ The Cell Cycle Switch Computes
Approximate Majority

SUBJECT AREAS:
Luca Cardelli’ & Attila Csikasz-Nagy™*
COMPUTATIONAL
BIOIOGY

— L
natre -
COMMUNICATIONS

ARTICLE

D 6 Jul 2012 | Accepted 14 Aug 2012 | Published 11 Sep 2012 | pOt:10. /i 2062 |
Greatwall kinase and cyclin B-Cdk1 are both critical
constituents of M-phase-promoting factor

MasatoshiHara'! Yusuke Abelt, Toshiaki Tanaka?, Takayoshi Yamamota® !, Eiichi Okumura' & Takeo Kishimoto!
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But again, is CC (or GW) the “same” as AM?

- Our evidence for computational content of
biochemical networks is so far

- Quantitative, covering both kinetic and steady state behavior of what networks do

- But empirical (based on simulations/numerical solutions)

- And it does not yet explain how the CC/GW network relates to the AM network,
that is, how each piece of CC/GW corresponds to each piece of AM

- Analytical evidence is harder to obtain

- The proofs of the computational properties (optimality etc.) for the AM algorithm
are hard and do not generalize easily to more complex networks

- Quantitative theories of behavioral equivalence and behavioral approximation, e.g.

in process algebra, are still lacking (although rich qualitative theories exist)
28




Network Morphisms

When does a (complex) network
implement a (simpler) algorithm?




activation -e

Antagonistic Networks hibiton

Tvs. 1 Tvs. 1 2 VS. 2 3Vvs. 3
Mutual Inhibition & Mutual Inhibition & low Notch => high Delta

Self Activation Mutual Anti-activation g — >
S ya o3

N r‘ ‘rr
I ;

y _Z J — 2
I ? g i i
Ml E %

low Delta <= high Notch

Cell cycle transitions Septation Initiation Delta-Notch The "new” cell cycle switch

Molecular mechanisms creating bistsble switches at cal cycle Phosphorylation network dynamics in the control of

cell cycle transitions

Danlel Fisher'*, Lillana Krasinska'*, Damien Ct
) ) x.ui hd — K€ = ow
s
Polarity establishment b R
LN ~
IT’E;I\lNOsSAOCPT'H)%IS' The PAR network: redundancy and L kY » - l i
- robustness in a symmetry-breaking 1 i YNC.‘: = YL'_ > Y:)\d

OF
THE ROYAL | 5 system
SOCIETY JLJ Y C “ = Q

Patterning embryos with oscillations: structure, function and
dynamics of the vertebrate segmentation clock

Andrew C_ Oates*, Lus G. Morel'3 and Sadl Ares®a®

- & iy
- !'_

N ARV

k Lateral Inhibition through Delta-Notch Weel® Weel ||
ene n eTWOF S Dynamics of SIN Asymmetry Establishment Signaling: A Piecewise Affine Hybrid Model* )

Construction of a genetic toggle switch in
Escherichia coli

Taire J.

Timothy S. Gardner®Z, Charles R. Cantor® & James 1. Collins*?




New Cell Cycle Switch Network

- A recent paper presents a more complete view of the cell cycle switch
N.B. “phosphorylation network dynamics” here is the same as our x5-x,-%, motif

Phosphorylation network dynamics in the control of . e
cell cycle transitions Mutual inhibition between
T e ke three Spec]es each

.’ ea’:\ﬂi lﬁﬁﬁﬁ?&fca?ar:fs?‘l;a E:IVEB FF?DUC; rd, South Parks Road, Oxford OX1 3QU, UK

B - PP1 /-1 Wee1

--._**

F'F"‘If;-}lm;(: E'EQDE w{;—}wu / '|'
k’ft PR \“j P  PP2A S X cdk1

ST - T_ [ 43

,—Cdkk.;' Y GWLI / —'l'Cdc25

Weel® Weel | i GdoZE® Cdods
NCC

U e’ L\
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Comparing networks

- How can we compare different networks?

- Different number of species
- Different number of reactions
- Apparently unrelated connectivity

- So that we can compare their function?

- Does antagonism (in network structure)
guarantee bistability (in function)?

- We do it by mapping networks onto one another

so that they emulate each other

p— X cm=-

Lt

shis
L2 Yj_r

— < o—
L

o N —
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Network Emulation: Ml emulates AM

- For any rates and initial conditions of AM, we can find some rates and initial
conditions of Ml such that the (6) trajectories of Ml retrace those (3) of AM:

o 1 1

T T Ny’Z___>X T \
(3 species)
Mmi AM

] / N initialize:
] z2 1 N\ x2

2 :(1’ 2 Z=X
- ~y =X

| ] Yi=X%
I AP AT ST VAR AN EE AR AR A AR AR Yo = Xo)

(6 species on 3 trajectories) (3 species on 3 trajectories)

- How do we find these matching parameters? By a network morphism!

33




CRN Morphisms

A CRN morphism from (S, R) to (S, R)
written m € (S,R) - (S, R)

is a pair of maps m = (mg, mg)
a speciesmapms €S — S
a reaction map mgz € R - R

extended to a complex map ms € NS — N°
linearly: ms(p)s = Egems—1(5) Ps

Mappings (symmetries)
between two networks

LI

r Xt X | — %)

Lo

Yoe— Y1ie— Yo

x1 + xo T T

2,4
(S

Yot+2zog Y112
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How to check emulations

- How do we check a potential emulation morphism
for all possible initial conditions of the target?

- Statically: check conditions on the joint stoichiometric matrices of the two networks
under the mapping

- How do we check a potential emulation morphism
for all possible rates of the target?

- Can't; but if one emulation is found, then the rates of the target network can be
changed arbitrarily and a related emulation will again exist

35




Network Emulation: Ml emulates AM
A ’ f | d ti .
Mapping Of species ana reactions / il condition

AM

homomorphic mapping

; — - .
Z->X . f N initial conditions:
~y -> X ] N

% |: z S Z,=Y1=X
RE VARSI =Y =%

less trivial than you might think:
it need not preserve the out-degree of a node!

36




Network Emulation: S emulates AM

A mappmg of speoes and reactions _ Q:i’
l_l_—l ] N any initial conditions

homomorphic mapping

initial conditions:

; 2
-y o] - Zp=Y2=Xp
‘ LZ . Z;1=Y15%

Z;=Yo =X,

Z->X
~y -> X

Si ZO‘ VZ]A _=22_
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Network Emulation: NCC emulates M

+ For any rates and initial conditions of Ml we can find some rates and initial
conditions of NCC such that the (18) trajectories of NCC retrace those (6) of Ml
(3 species each)

3 9\ Il - 2 T
Vi il zipoz el
?_/ I - 05 \ SZ ) Y,q,S >y 05_ | T T M

IIIIIIIIII IIIIIII
3 3

NCC Ml

(/// S S S

.

(18 species on 6 trajectories) (6 species on 6 trajectories) initialize
zZLp =z
yas =y
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Emulations Compose

- The (18) trajectories NCC can always retrace those (3) of AM

d i o«

{ Lp -z Z,~y-> X
1_ J_ // T _'I' YAy » — X --- The new cell cycle switch
late AM exactly.
T_ _T Zrp - X _ I - emg » iy

~Y,~Q,~S > X For any initial conditions

NCC AM of AM.

/ ..... / ' And for any rates of AM.
] A ] N\, x0
2.54 22 | e N
] 2 1 N2

IS SIS S
EREREAAD

(18 species on 3 trajectories) (3 species on 3 trajectories)
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Emulations are Modular

A L |
Ay m&
E_T I i 0 10 20 30 40 50

--------

t x0 1 2
B

-------------------

0 24 22 Yo vyl y2 wo wi w2

T — OO
TN HE
i f?'?“ - thook "!M‘!‘
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Approximate Majority Emulation Z00

N —
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»VJ > N
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N N >
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Approximate Majority Emulation Z00

r% X %‘; Ll T}
T_:_I I—J. | J 2’: ° - YT__-I- \ B , — r
L']ﬂ ;

..y_ -e |
-
DN

DeliazNoteh RSentation miAtion
— fi'. — ’> y S,f Z ” X 5
® 1 S :
¥_ _$ Z:‘»’X [i} r,~»x $]
! ! ccr I
“ - Gl G5 S SnyCataliie
y l__|_.| ‘ X SWItGh
z
S
SRt Eﬂiﬂ%m ll_l
r |_ x am
w TT 1 Ll
r 42

( homomorphism and
stoichiomorphism (transitive))




Approximate Majority Emulation Z00

q s ;o- — 7 -- S j:-

[ _é | T J_ fri

T_:_I I | 2*:; -y ] \ A T
~y—  ler T_z.. Al ccr

ol s — Lr

il

( homomorphism and
stoichiomorphism (transitive))
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Nature likes a good algorithm

First part Second part

S
5 1
L 1
SR = "y
' I _T r ccCr
Approximate | Exact
‘default” rates and initial conditions t ©°° any rates and initial conditions

These additional feedbacks do exist
in real cell cycles (via indirections)

The cell cycle switch can exactly emulate AM

/1 ’ .
r / ﬂx ¢ 1
LLL/ S T S i i
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Characterization of Emulation

Emulation Theorem: If m € (S,R) - (S, R)
is @ CRN reactant morphism and
stoichiomorphism then it is a CRN emulation

A T preserve enough
"p=p-Mmg network structure
preserve enough
chemical stoichiometry

reactant morphism mST

stoichiomorphism QY- -Mmep =Mg - ‘/ﬁ

U

emulation /P, F(Do ms) = F‘(«,’)) omg preserve derivatives

F is the differential system of (S, R), given by the law of mass action, ¥ is a
state of (S, R). ¢ is the stoichiometric matrix and p is the related reactant
matrix. mg and mg, are the characteristic 0-1 matrices of the morphism maps
ms (on species) and mg, (0N reactions). —Tis transpose.

Homomorphism implies reactant morphism.

Cardelli BMC Systems Biology 2014, 884
Lcom/175, BMC
Systems Biology

RESEARCH ARTICLE Open Access

Morphisms of reaction networks that couple
structure to function

Luca Cardelli’™?

AM

o
AM N+
|
=S
X0 X | e—— X, e
|

os]
1_1_ o T T T T
Yoe—Y1e— Yo :
o
253 it
=
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Model Reduction

- Efficient algorithms to:

- Discover emulation morphisms

- Find reduced networks
-+ Compute quotient CRNs

Forward and Backward Bisimulations for Chemical
Reaction Networks

Luca Cardelli!, Mirco ’I‘ribast011e2, Max Tschaikowski®, and
Andrea Vandin®

1  Microsoft Research & University of Oxford, UK
luca®microsoft.com

2-4 University of Southampton, UK
{m.tribastone,m.tschaikowski,a.vandin}@soton.ac.uk

Aggregation Emulation
reduction reduction
Original model Forward reduction Backward reduction
Id |R| S Red.(s) | R |S|  Speed-up Red.(s) | R S| Speed-up
M1 3538944 262146 4.61E+4 990 222 7T.60E+4 2708 222
M2 786432 65538 1.92E+3 720 167 3.68E+3 1950 167
M3 172032 16386 8.15E+1 504 122 1.16E4+3 1.77TE+2 1348 122 5.34E+2
M4 48 18 1.00E-3 24 12 1.00E+0 2.00E-3 45 12 1.00E+0
M5 194054 14531 3.72E+1 142165 10855 1.03E+0 1.32E+3 93033 6634 1.03E+0
M6 187468 10734 3.07TE+1 57508 3744 1.92E+1 2.7T1E+2 144473 55756 3.53E+0
M7 32776 2506 1.26E+0 16481 1281 6.23E4+0 1.66E+1 32776 2506 X
M8 41233 2562 1.12E+0 33075 1897 1.12E4+0 1.89E+1 41233 2562 X
M9 5033 471 1.91E-1 4068 345  1.04E+0 4.35E-1 5033 471 X
M10 5797 796 1.61E-1 4210 503 1.47E+0 7.3TE-1 5797 796 X
Mi1 H832 730 3.89E-1 1296 217 1.32E+1 6.00E-1 2434 217 7.55E+0
Mi2 487 25 2.00E-3 264 56 1.828E+0 6.00E-3 426 5  1.31E4+0
Mi13 24 18 1.20E-2 24 18 >4 7.00E-3 6 3 1.00E+0
From the BioNetGen database 47




Stochastic Switches

€ CME Mean and

A Network ‘ B CME Mean and D CLA Mean and Standard

Standard Deviation

Distribution

- Disentangle the contribution
of complexity to stochasticity ..

- Compare network noise on the baseline of
deterministic emulation, across networks of
different size and structure

Sl

Luca Cardelli, Attila Csikasz-Nagy, Neil Dalchau,
Mirco Tribastone, Max Tschaikowski

qk:"“‘l‘

Mi

ccr




Synthetic Implementation of AM

- We produced a chemical implementation of AM using DNA gates
- e, a 'synthetic reimplementation’ of the central cell-cycle switch.

a b

e X —p —p
nature G Majority Network (Majority) —» — Majority : : %
n i, X+Y—%528+PB Y — | =5 (Majority)
a Ot C 0 Ogy . e k (Minority) —* e T
Il e & ii. B+X — 2X+PX .

k s
lii. B+Y — 2Y+PY . I
|LL ||.LL ii.B Y
. . . - K=XntPX-PB A =
nature.com » journal home » archive » issue » article » abstract Y=Y +PY-PB E PB B X PX X : Y PY Y
B=2PB-PX-PY B e
ARTICLE PREVIEW
view full access options » (v
X;=0.9, ¥=0.1 Xo=0.8, ¥,=02 Xp=0.7, Yo=03 Xo=0.6, Yo=0.4
= == A L ~ 1
o o o o
NATURE NANOTECHNOLOGY | ARTICLE go7s £078 50-75\/ Sl
< e 3 05 5 05 = 05" 3 08\ e
2 B - aS g
8025 L g0 | o=\ - .80
Programmable chemical controllers LT U Eam e Spmma 5 pmxe
g Time (hours) Time (haurs) Time (haurs) Time (hours)
H,=0.1, Yy=0.0 %=02, Y;=08 =03, =07 Xo=0.4, Yo=06
made from DNA s o i
Zors _:;0.75\,/””:5 29-75\// Zors i
Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, 300_‘;: 300‘; goué: : 5 0‘5{
= 5025, ~ . —— | B
Luca Cardelli, David Soloveichik & Georg Seelig O = w2 g}”'- 4 o U}\‘E——- g gu.zsl X
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 b 10 20 30 40
. Time (hours) Time (hours) Time (hours) Time (hours)
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Conclusions




Networks are Algorithms

- They are methods for achieving a function

- We need to understand how these methods relate to each other
- In addition to how and how well they implement function
- Algorithms can be obfuscated, and nature can obfuscate networks (to what end?)

- Network emulation can be checked statically

+ By stoichiometric/reaction-rate (structural) properties
- That is, no need to compare ODE (functional) properties
- For any initial conditions and rates of (one of) the networks

- Efficient algorithms can find emulations

- Automatic model reduction of large networks 5




