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Outline

* Processes and Functions
o The n-calculus modeling language

L

* Processes and Chemistry
o Biochemical modeling in w—calculus

« Modeling Combinatorial Systems

o Why n-calculus and other “agent-based”
or “reactive” modeling languages are useful



Processes and Functions




Functions
f(x) = /X

X —K x+y
input output yl=vIxl,

“read input into x; then write +/x to output”

function \ read write channels

— \?input(x); loutput(~/x)

/ \ (bound) variable

(binding) input variable output expression occurrence



Composing Functions
g(x) = (fo HH(x) (= f(f(x)))




Composing Functions

g(x) = (f o H)(x)

o =

“create a new channel and use it to compose two copies of f”

channel creation (restriction/hiding/boxing)

(parallel/process) composition

g = (vtemp)
2input(X); temp(/x) |
2temp(y); loutput(/y)
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Many inputs and outputs

_ out,
::j out,
P = ?in,(x); 2in,(y); lout;(x+y); P

® ?in5(2); lout,(+/2); 'out;(22); O

2in
. 2 The ‘skeleton’
T automaton
lout
P 1
2in
3 lout, lout,

£



That’s t—calculus

L

+ To compose processes P we need:

(with identity elem. 0)
(with x bound in P)
(equal to P | *P)

o Composition:

o Channel cration:
o Recursion:

P|P
(vx)P
7'<P

e To execute actions we need:

o Channel reading:
o Channel writing:
o Choice:

2c(x); P
Ic(M); P
PoP

(wit
(wit
(wit

N X bound in P)
N message M)
n identity elem. 0)

... and channels can be sent as messages!
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Generalizing Functions and Automata

J

A

« Unlike functions...

o Processes have multiple, explicitly named, input and
output channels.

o Processes can run in paralle/, can deadlock on their
inputs, and can be nondeterministic in their outputs.

 Unlike automata (FSA)...

o Processes can transmit data (not just change state).

o While automata ‘talk’ to input strings, processes ‘talk’ to
other processes: processes are communicating automata.

o Processes are not “finite state”; they can express
unbounded computation in time (divergence) and space
(proliferation).



Algebraic Properties

e Functions have one binder and one rule:

o Function application:
If  f(X) =4o¢ M{X} then f(a) = M{a/x}

e Processes have two binders and two rules:
o Communication (input ‘?’ binder)

(Pcx);Pixp) ® P | (Ic(@);Q ®Q = Pla/x}|Q

o Scope extrusion (new ‘v’ binder)
If X not occurring in Q then ((v x)P) | Q = (v x)(P|Q)



Implementations

SPiM (Stochastic Pi Machine)

o http://lepton.research.microsoft.com/VisualSPiM/

o Runs in a browser with Silverlight.

Examples: | Repressilator = | | Simulate | | Pause |

| Text-to-graph | | Graph-to-text |

| License | | Install |

Code Graph

Q)| |#|5 |%[5a@x] 9]~

SBML Reactions Table Plot

|[5how all|Hide all| (= Protein(c)|= Protein(a)|= Protein{b)|

(* Repressilator *) - . fod ) it Hide | =|
directive sample 200800.8 1008 130—«: ———
directive plot Protein(b); Protein(c); Protein(a) 120__5 \ Protein(c)
val t = 8.1 110—57 \ Protein(a)
val d = ©.981 i !
val u = 8.9601 1003 ™\ protein(b)
val bind = 1.8 a0 F
new agbind:chan 4
new b@bind:chan 80—
new cigbind:chan | ?D—;
let Gene{a:chan,b:chan) = ED—E
do delaygt; (Protein(b) | Gene(a,b)) E
or ?a; delay@u; Genes(a,b) SD__E
and Protein(b:chan) = 40-4
do 'b; Protein(b) 3
or delay@d 30—
e 20
run { Gene(a,b) | Gene(b,c) | Gene(c,a) ) £
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Processes and Chemistry




A

" Continuous Chemical Systems

J

) Reactions: \
A —" B, + ... + B, Degradation
A, +A, " B, + ...+ B, Asymmetric Collision
A+A —>" B+ ..+ B, Symmetric Collision

Continuous reaction kinetics, respectively:

Al* = -r[A] Exponential Decay
Al* = -r[A][A,] Mass Action Law

A]l* = -2r[A]? Mass Action Law

(assuming A=B;=A, for all i,j)
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n—calculus for Chemistry

L

-

 Here we just need a subset of m—calculus

o No new-channel (v) operator (except to define delays t,)
o No value-passing (only synchronization/collision ?/!).

« To compose soups P we need:

o Stochastic channels: X, r is the rate of an exponential distribution:
the rate of communication on that channel

o Composition: P|P (with identity elem. 0)

o Recursion: *P (equal to P | *P)

« To execute species we need:

o Collision: ?x,; P (with no input variables)

o Co-collision: Ix,; P (with no output messages)

o Delay: T,; P (= (v x,) ?X,;P|'x,;0 for any x not in P)
o Choice: Po P (with identity elem. 0)
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C Discrete Chemical Systems (1)

r ml

Reaction:
A " B, +..+B

n

Discrete reaction kinetics:

A=r.(Bl..|B,)

The mathematical meaning of that is a Continuous Time Markov Chain
(for a specific set of initial conditions, e.g. a single A molecule), here
represented as a transition graph:

r

- >@
A B|...IB,

Hence the n—calculus description abstracts from initial conditions (like ODEs).
For each set of initial conditions, a CTMC can be systematically extracted
from the stochastic n-calculus models.
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C Discrete Chemical Systems (2)

r ml

(Uniquely named) reaction:
¢ A, +A, -' B, +..+8B,

Discrete reaction kinetics:

A, =7c; (B,]...|B) (the name of the reaction becomes the channel)
A, =Ic; (B]...|B,) (splitting results is arbitrary: 1<i<n)

With initial conditions A, |A, (single molecules), the CTMC is:
I

o >@
A lA,  B|...IB.




C Discrete Chemical Systems (3)

r ml

(Uniquely named) reaction:
¢ A+A > B, +..+B

n

Discrete reaction kinetics:

With initial conditions A|A (two molecules), the CTMC is as follows;
note that each copy of A can do an input or an output, so there are
two possible paths to the outcome:

r/2

Q That is: ™ i >
AlA B,|...|B AlA B,|...|B

r/2 n

n



From Reactions to Processes

L

Half-rate for |
channels :
" v;:A+B —k, C+C i ! symmetric
y/ 1 In‘l‘er'ac.‘l'lon (1 per reaction) reactions
Vit | Veke) | V3k3) |Vakar2)
v;: C —k; E+F A [2:(c|c) ?2:D
vg F+F —k, B w9 B 10
\V Y
‘ me | ¢ 1.0 [t(E|F)
QV wn
O D
/ 8 5
Fill the matrix by columns: Q.ﬁ' E
. . ki ~ F ?.B
Degradation reaction v;: X - P. 0
add T;P, to <X,v,>. =
Asymmetric reaction v;: X+Y ki P, 1 D
add ?;P, to <X,v,> and !;0 to <Y,v;> k
Symmetric reaction v;: X+X ki P, Read out the processes by rows: A 2
add ?;P, and !;0 to <X,v,> A C
B = !V](H);O
C = !Vz(kz);o @® Tk3,(E|F)

D=0
E=0

B G
. . O\ ks
F="™iua20B @ Wy4a4,2,0 k4 F E
18-
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~ That Chemical System in SPiM

A =S ?V](k]),(C|C) @ ?VZ(kZ);D

-

B= k10
C = V2,0 @ 71,3;(E[F) val k1 = 0.001 new vi@kl:chan
D=0 val k2 = 0.001 new v2@kl:chan
P = 10 val k3=1.0
F = Waga2B ® Waga2:0 val k4 = 0.001 new v4@k4/2.0:chan
g let A() = do ?v1;(C()|C()) or ?v2:D()
336 B0 and B() = Ivl
= and €() = do Iv2 or delay@k3:(EQ|F())
and D() = ()
bz and E() = ()
D and F() = do ?v4;B() or Iv4
,-—"’_'_'_Jf—
q10 W A * k c run 300 of (AQ)IBOICOIDOIEQIF()

\\\\g‘ K,
DD 11.66

Gillespie-style

B C
stochastic simulation k
‘k4\FA‘:’ E

2016-02-16 194



Model Reduction Techinques

« That is a systematic way to translate
reactions to processes.

« But there can be better ways to do it.

« That is, ways that producemore compact
and/or modular models, but with the
same kinetics.



Ex: Catalysis

Two reactions, same catalyst C

o According to the general scheme the catalyst uses
one channel for each reaction it catalyzes

a: A+C—->"C+8B C=1la;Cea!b,;C
b. D+C—->"C+E A ="7a,;B
D=7b,;E

o Modularizing: the catalyst has its own catalysis
channel c, used for all the reactions it catalyzes:

A+C->rC+B C=Ic; C
D+C->"C+E A="7c;B
D=7, E

£



Modeling Combinatorial
(Biochemical) Systems




Molecules with State
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« Explosion of species, reactions, and their
state space.

Weet 4._: n modification sites
Yt . = 2" molecular states

Cdc25 = 2N ‘SDECiES,
= 2" ODEs

'f'U
g "U-\'

L
z Cdc2
O 3~
rs o 9
Cdc13 (&)
Rum/ Y
Cig1
Cig2
Rum/

L lamina

Rum
S-Phase
On-set

(b) Proposed improvements of graphical representation of

A graphical notation for i
biochemical networks

Hiroaki Kitano



Connected Molecules

Further combinatorial explosion

n states —— m states = nxm states 2N x 2n2 x

BIOSILICO Vol. I, No. 5 November 2003
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Figure 6. An example of the process diagram for part of the fission yeast cell cycle process represented in Figure 3.Temporal sequence of biochemical
processes are represented explicitly. Molecular species appear repeatedly along the interaction processes.

A graphical notation for
biochemical networks

Hiroaki Kitano

x 2"m = BIG



Iterated Connections (Polymers)j

 ‘Infinite’ explosion
An actually infinite number

A A A A A A A A A A of species and ODEs

—A—B—A—B—A—B—A—B—A—B— p] (polymer of length 1)
— A—B—B—B—A—B—A—B—A—A— P2 (polymer of length 2)
Ps3 (polymer of length 3)
—B—B—B—B—B—A—A—A—A—A—
—A—A —Jll —A—A —A—ﬁl\ —A—A—A—
—B—B-—B B—B—B—
Copolymer equation [edit]

An alternating copolymer has the formula: -A-B-A-B-A-B-A-B-A-B-, or -(-A-B-),-. The molar ratios of
the monomer in the polymer is close to one, which happens when the reactivity ratios rq & rz are
close to zero, as given by the Mayo-Lewis equation also called the copolymerization equation:!'"

d[M;]  [My](ry [My] + [M,])

d[) ~ VL] (O] + 2 (M)
WIKIPEDIA where ry = ki1/kiz & ra = koalkay

The Free Encyclopedia




n—calculus for Biochemistry

« Biochemistry here means

o Direct modeling of complexation and polymerization, which are
fundamental biochemical features.

o That is, a complex is not a “new species”: it is a structure formed
by existing basic species, which can also break apart.

e We now need the fu// t-calculus

o We need to create new channels to represent
new complexation bonds.

o We need value-passing so the components of a complex can
operate on those bonds: we need to pass channels over
channels.



Complexation
A+ B so AB \

There is no good notation for this reaction in chemistry: A:B is considered
as a separate species (which leads to combinatorial explosion of models).

But there is a way to write this precisely in m-calculus. Let there be a
single public association channel a, at rate r, and many private
dissociations channels d. at rate s, one for each complexation event
(these are dynamically created by the new-channel operator v):

Afree = (v ds) !ar(ds); Abound(ds)
Abound(ds) — !ds; Afree
Bfree = ?ar(ds); Bbound(ds)

Bbound(ds) — ?ds; Bfree

Note that we are describing A /independently of B: as in
the catalysis example, A could form complexes with
many different species over the a, channel.

£



Polymerization
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« Polymerization is iterated complexation

o It can be represente in m—calculus finitely,
with one process (definition) for each monomer.

o Note that polymerization cannot be described finitely
in chemistry (or ODEs) because there it needs one
reaction for each /ength of polymer.

o The reason it works in w—calculus is because of the v
operator. It enables the finite representation of
systems of potentially unbounded complexity.

o Like in real biochemistry, where the structure of each
monomer is coded in a finite piece of DNA, and yet
unbounded-length polymers happen.



Conclusions




n—Calculus

L

+ A solution to combinatorial explosion

o Pi-calculus does not have the typical combinatorial
problems, at least not when you are writing a model.

o Models are exponentially (for phosphorylation/
complexation) or infinitely (for polymerization) more
compact.

o The combinatorial explosion still ha%pens at simulation
time, but can be handled ‘on demand’.

o The state space is explored incrementally, and even if the
state space is actually infinite (as with polymers) we can
still simulate it with standard techniques.

« Shared by any “agent-based” modeling
language

o Provided it is sufficiently powerful to directly represent
biochemical situations like complexation

o l.e. NOT shared by chemical reactions (or ODE) languages

L €1



In Summary

« m—calculus
o A mathematical notation for reactive systems

o In stochastic form, suitable for representing discrete
chemistry, biochemistry, etc.

o Some unique properties: ability to finitely express systems
of unbounded complexity, like networks of complexing
proteins.

* Further Reading

o R. Milner: Communicating and Mobile Systems: The Pi Calculus

o A. Regev, E. Shapiro. Cellular Abstractions: Cells as Computation. NATURE vol
419, 2002-09-26, 343.

o L. Cardelli: From Processes to ODEs by Chemistry. TCS 2008, DOI:

o A. Phillips,L. Cardelli, A Correct Abstract Machine for the Stochastic Pi-calculus,
in Concurrent Models in Molecular Biology, 2004.



