Spatial Logics
Luca Cardelli

Microsoft Research
Bertinoro 2005-04-26

Reflecting joint work with Luis Caires, Andrew D. Gordon.

Spatial Logic
Informal statements:
e Distribution: Where are things happening?
» Security: Where are things kept, and who can get there?
* Privacy: Where are things known, and where are they leaked?

We need a new way of reasoning (i.e. a new logic):
e Classical logic: Whether something 1s true.
e Intuitionistic logic: How something is true.
* Temporal logic: When something is true.
» Spatial logic: Where something is true.
Why logic?
» Essentially as a foundation for future type/analysis systems.

* The technical sequent calculus presentation is actually very similar to type
systems judgments.

Motivation

We have plenty of logics for sequential (i.e. deterministic) computation.
We want logics for concurrent computation (Ex.: Hennessy-Milner).

We want logics for distributed computation.
e Spatial arrangements of processes are explicit.
* Formulas are modal in time and space.
* The spatial intuition 1s strong for process calculi with locations.

e But we are now applying it to a standard T-calculus.

We are not doing Curry-Howard.

* Because spatial properties are not meant to be preserved by
reduction (because of mobility).

e A formula is not realized by a proof tree/computation;
it 1s realized by a world (at a particular place and time).

Aim: Describing Distributed Systems
Distributed Systems
e Concurrent systems that are spatially distributed.
e And have well-defined subsystems that hold secrets
(administrative domains).
Spatial Operators and Spatial Properties
e Are common to all process calculi (e.g., P | Q).
e Are prominent in calculi with locations (e.g., n[P]).
e Spatial properties are finer that popular equivalences such as
(temporal) bisimulation. (Cf. space-time bisimulation.)
We want formal tools to talk about spatial properties.

e So we can precisely describe modern distributed systems.

Spatial Properties: Identifiable Subsystems

A system is often composed of identifiable subsystems.

* “A message is sent from Alice to Bob.”

e “The protocol is split between two participants.”
e “The virus attacks the server.”
Such partitions of a system are (obviously) spatial properties. They correspond to a
spatial arrangement of processes in different places.

* Process calculi are very good at expressing such arrangements operationally
(c.f., chemical semantics, structural congruence).

* To the point that a process is often used as a specification of another process.
(We consider this as an anomaly!)

* We want something equally good at the specification, or logical, level.

Spatial Properties: Restricted Resources

A system often restricts the use of certain resources to certain subsystems.

e “A shared private key n is established between two processes.”
* “A fresh nonce n i1s generated locally and transmitted.”
* “The applet runs in a secret sandbox.”

Something is hidden/secret/private if it is present only in a limited subsystem. So
these are spatial properties too.

» [f something is secret, by assumption it cannot be known. Still, we want to talk
about it in specifications.

* We can talk about a secret name only by using a fresh name for it
(we cannot assume the secret name matches any known name).

* So freshness will be an important concept. Logics of freshness are very new.

Spatial-style Protocol Specification

Right now, we have a spatial configuration, and later, we have
another spatial configuration.

E.g.: Right now, the agent is outside the firewall, ...

agery\ﬁrewall

X F 1

(agent|T] | firewall[T] | T)

Spatial-style Protocol Specification

Right now, we have a spatial configuration, and later, we have
another spatial configuration.

E.g.: Right now, the agent is outside the firewall, and later (after
running an authentication protocol), the agent is inside the

firewall.

firewall

agent i
X

(agent|T] | firewall[T] | T) A O(firewalllagent[T] 1 T] I 'T)

Spatial-style Protocol Specification

Right now, we have a spatial configuration, and later, we have
another spatial configuration.

E.g.: Right now, the agent is outside the firewall, and later (after
running an authentication protocol), the agent is inside the
firewall. And this works in presence of any (reasonable) attacker.

attacker firewall

Attack > ((agent[T] | firewall[T] | T) A O(firewalllagent[T] | T] 1 T))

Trees and their Descriptions

Trees n
) ﬁb

root edge
Syntax for Trees (P,Q)
0 root
n[P] edge
PlQO join

P = Q iff they represent the same tree.

It is the congruence induced by:
P |P, =P, | P,

P I (P,IPy) =(P,|Py)I|P,
P10 =P

join
Basic Descriptions (4,B)
0 there 1s only a root
n[A4) there is an edge n to a subtree

418 there are two joined trees

T there 1s anything

Formulas and Satisfaction Relation

PE F never (TL£F=F
PE ANB £ PEAAPES

PE 9= £ PEA=PESB

PE 0 £ P=0

PE A\IB £ 3P’ P’ell. P=P’ |\P’APEAAP’ESB
PE %P & VYPell PEA=PPESB

PE n[4] £ 3JPell. P=n[P’)AP’ EHA

PE Y@n L& p[PIEA

Basic fact: if PEZand P= Q,then Q4

Model:

* The collection of those sets of P’s that are closed under =.
(I.e., 1n this simple case, the collection of all sets of trees.)

* A boolean algebra (F A =), a quantale (|), and more.
e With some interesting interactions: Z>F = “%7 unsatisfiable”

Examples

“Vertical” implications about nesting
“Business Policy”

Borders] Borders[T] =
Starbucks]...] | Borders| Starbucks[T] | Books[T] | T]
Books|...] |
Records[. _] If it's a Borders,
then it must contain a
] Starbucks (and some books)

“Horizontal” implications about proximity “Social Policy”
Smokerl...] | (NonSmokerT] | T) =
NonSmoker...] | (SmokenT] | T)

Smoker..]

If there is a NonSmoker,
then there must be a Smoker
nearby

What makes a room bad for a nonsmoker?
? E NonSmoker[T] > Pub
Pub & (NonSmoker[T] | T) = (Smoker{T] | T)

Answer: ? = Smoker]...]

What makes a Borders legal?
? F OkBorders@Borders
OkBorders & Borders|T] =Borders|Starbucks[T] | Books[T] | T]
Answer: ? = Starbucks|...] | Books]...]
Or illegal:
? E (mOkBorders)@Borders

Answer: ? = Books]|...]

Ground Propositional Spatial Logic (for Trees)

Identity, Cut, and Contraction

(Id)
t=u
Ct:Aru: 4 A

(CL)
Ct:At:AF A
Tt AR A

Propositional Connectives

(FL)

Ct:FFA

(AL)

T t:At:BFA
Ct:ANBEA

(=L)
T'Ft:A A T t:BFA

iAo B u DB

(Cut)
T'Ft:A N T t:A9FA
I'kEA

(CR)

TFt:At:4A9 A
T'Ft:4 A

(FR)
I'EA

'kt F, A

(AR)

T'Fe:AA THE:B, A

Lt:A=BEA

T'Ft:AAB, A

(=R)
T t:ARt: B, A

'kt:A=>B, A

Spatial Connectives

OL) OR)
t#0 =0

Ct:0FA I'Ft:0, A

(IL) (IR)

VYuv. ulv=st T u: A v:BFA Juv-ulvet TFu: 49 A TEv:B, A

Ct:AIBEA T'Ft:AIB, A

(> L) > R)

Ju. TFu:A A T tu:BFA Yu T u:AFtu:B, A
Ct: 49> BEFA T'Ft:A> B, A

(m[] L) (m[]R)

VYu:nful=t T, u:AFA Ju-nul=t. T'Fu:4 A
T t:n[AF A T'Ft:n[94b), A

(@nL) (@n R)

Ton[f] : AF A T'Fn[f]:9 A

rt:49@nk A 'kt:%49@n, A

Calcagno-Cardelli-Gordon:
Deciding Validity in a Spatial Logic for Trees.

N.B.: neither ¢ nor ¥ contain variables. Then:
e t E S isdecidable.

 Validity is expressible in the logic, so it is also decidable whether %7 is valid
(i.e.: whether 0 E (4=F)>F).

e There is a finitary version of the proof system.
e There is a complete decision procedure for I' - A.

New Logics for Concurrency

In the process of making spatial sense of n[%?], we also had to make
spatial sense of %7 | ‘3. The latter is, in fact, the harder part. So, in
retrospect, 1t makes sense to consider it on 1ts own.

An outcome is spatial logics for CCS/CSP-like process calculi. Basic
idea: take a Hennessy-Milner modal logic and add an &2 | B operator.

([Dam] Very hard to reconcile with bisimulation.)

One can go further and investigate spatial logics for restriction, with a
hiding quantifier Hx.%4 (e.g. for w-calculus). This is essential for
security/privacy specifications.

([Caires] Very hard to reconcile with bisimulation.)

We can make all that work smoothly by taking a very intensional point
of view. The logical formulas are not up-to-bisimulation: they are
up-to-structural-congruence. This requires a pretty drastic change in
point of view.

Caires-Cardelli: A Spatial Logic for Concurrency (Part LII). TACS’01, CONCUR’02.

New Type Systems for “Web Data”

Idea: use spatial logic formulas as types, describing the structure of tree-shaped data in
a rich and flexible way (c.f. XDuce). Use function types over those data types to
type data transformers:

Starbucks[Smoker[T] | T] — Starbucks[—(Smoker[T] | T)]

It is possible to extend that idea by using Hx.%7 to type hidden/private information:

Cardelli-Gardner-Ghelli: Manipulating Trees with Hidden Labels.

Spatial Logic for w-calculus

We do this kind of thing for a whole asynchronous 7-calculus.

This gets considerably more complex, but allows us to the write one-
line specifications of spatial properties such as:

The protocol ensures that there 1s a private name shared between
two distinct parts of the system, and nowhere else.

Adding locations (e.g. switching to ambient calculus) 1s quite easy.

The general methodology seems very flexible.

A Motivating Example
Client & Hx. (Protocol(x) | Request(x))

A Client generates a secret x and then engages in a Protocol(x) (e.g. simply pub(x)) in
order to perform a request Reguest(x) (e.g. some communication on x) which is
uniquely associated with the secret x.

Server £ Wx.(Protocol(x) > <&(Handler(x) | Server))

A (recursive) Server, in presence of an instance of Protocol for a fresh x, produces a
Handler(x) uniquely associated with the secret x, and is ready again as a Server.

Client | Server = <(Server | Hx. (Request(x) | Handler(x)))

When a client interacts with a server, the result is eventually again a server, together
with a private handler for the client request.

We can show this implication in the logic, without looking at any implementation of
Client and Server.

Note the subtle distinction between having/creating a secret (Hx) and obtaining/using a
fresh secret (I/1x).

Processes

0
PlQ
n|P]
(vn)P

n{m)

Typical Spatial Formulas

(void)
(composition)
(composition)
(restriction)

(message)

Formulas
0
Al B

n[A|
n®4

n{m)

(nothing here)
(two things here)
(one thing here)
(hidden thing here)

(a message here)

Modal Logic Revisited . simpsons hesis

(Id) Finite graph (Cut)
S = {x—y} SHITEx:A A S x:AHA

ST, x:AFx: A A (S)TEA |
(SC,x: A, x:BLA o (S)Tkx: 4 A (S)TFx:B,A
ST, x:AABEA (S TEx:AAB, A
(=L (=R)
STEx: A A (SI,x:BEA S x:AFx:DB, A

ST x:A=>BEFA (S TEx: 9= B, A
(FL) (FR)

(S)TEA

()T, x:FFA (S)TFx:F, A x reduces to y

(o L) y not in the conclusion (¢R)
(S, x=>) [y: AEA [oA someone I%j (S)TEy: A A x>y
)T, x: oAF A reduce to enjoys S)TFx: o, A

@oL) o I (@ R) y not in the conclusion 2 I‘ebc.lzlces to
(S)F,y:%I—A Xy : everyone j (S,x—)y)l"l-y:%,A arbitrary y
)T, x: oAk A reduce to enjoys A S TFx:0Z A

Modal Variations

That 1s minimal modal logic.

Additional knowledge about the visibility relation (e.g. transitivity) can
be added without modifying the rules for logical connectives.

Additional knowledge 1s embedded in “world” rules for S. E.g.:

Additional Visibility Structure:

(S — refl) (S — trans)
(S, x=>x)T'FA (S, x=2)TFA x>y y—oz
(SST'EA (SSTHFA

If — is by assumption reflexive,
we can discard a superfluous

assumption that x—x discard a superfluous assumption that x—z

If — 1s by assumption transitive, and can already
derive in S that x—y and y—z, then we can

3x=x)x:AFx:A (Id) 5 x>y y—ozx—2)z7: ALz A (Id)
2(x—=x)x:049Fx: A 3.@L) 4 (x—>y,y—ozx—2)x:0AFz: A 5 .@L
1)x:09Fx:94 2, (S>ref) 3x—yy—=2)x: 049k z: A 4,(S > trans)

2(x>y)x:04ky: 0% 3,(@R)

1()x:04F x: 004 2,(@R)

Many-World Sequents for Spatial Logics

S)I'FA

Validity: if all the constraints S, and all the assumptions I'; are satisfied,
then one of the conclusions Aj 1s satisfied

(Spatial) equivalence constraints
(denote structural congruence)

Indexes (denote processes, i.e. “worlds”) ’

(= >V’) u:A. . F..v:B..

(Temporal) reduction constraints

. Formulas (denote properties
(denote process reduction) 0 BHEle) ’

What’s going on
Ex.: (x—>y)x:04tFy:o0¥9

This 1s a bit strange because we embed a piece of the semantics (the
worlds) into the sequents. However it 1s done abstractly (“x™).

It 1s natural in the sense that sequents looks very much like a type/ND
system: there are terms and their “types” x : %4.

Unlike a type sytem, the terms on the left of I are not just unrestricted
variables. We need the (S) part to express constraints on how these
terms relate to each other.

Within a single sequent, we can talk about properties of different
worlds. This give us lots of freedom and orthogonality in proofs.

Despite the x : %7 look, we are not doing Curry-Howard. The terms do

not encode proof trees: in standard modal logics, the terms are just
variables with no structure. (But we will use structured terms.)

Basic Process Calculus

ts

P,O e I1::= Processes PlO=P
0 void PlO=QI|P
PlO composition (PIO)IR=PI(QIR)
n(m) output (n,m € A)
n(m).P input P=P
P=0=0=P
n{m) | n(r).P — P{r<m} P=RAR=Q0=P=0Q
P—0 = PIR—QIR P=0Q0=PIR=0QIR
P=P AP-0'AN0’=0 = P-0 P =0 = n(m).P = n(m).Q
Labeled transitions:
P-70 £ P-0
P-"mQ & P=pim)l O x(y)* & x(y)
P—-"mQ £ P=np)P’|P” A Q=P {p—m} P’ x(»* £ x{y)
Inversion lemmas:
P10=0 = P=0 UIV=TS = J x,y,zw s.t. U=xly, V=zlw, T=xlz, SSylw
NG a*TA UIlV=T= Jxys.t. UV =3Ixyx’y,as.t.
(T=xIV A U-%) U=xly A x—%’

Vv (T=Uly A V=%) A Y-TY AXly’=V

A Bed:=

K
ANB
0
ANB
a»A
Vx.A
VXA
X

»A

A«

>

4 SZJ«T

Minimal Process Logic

Formulas

false

conjunction Y=B
void

composition “>B
after a YA«a
universal name quantifier
propositional quantifier
propositional variables

Actions (a € Act x,y € V)

silent
output
input

implication

guarantee
before a

Things one can say
Single-threaded (or void):

—(—0 | —0) (=4 & A=F)
Somewhere %4 holds:
AT (T 2 —F)

Output: outputs a message m on n (and 1s/does nothing else):
n(m) (n{m) £ n(m)»0)

In presence of a message m on n, sends a message n on m and stops:
n{m) > »m(n)

Fixed input: inputs m on n and then satisfies 7

n(m)»4A

Parametric input: inputs some x on n and then satisfies:

n(x)4 2 Vx.n(x)»%A

Satisfaction

P£ {ScITIPeSAP=0= Q€eS} theproperties |

PF,_F never

PE.AAB iff PE,AAPE, B
PE,94=B iff PF, A= PF, B

PE,0 iff P=0

PE,SA\B iff AP’ ,P"ell. P=P’ |P" AP’ E,AAP"E, B
PE,A>B iff VQell. QE, A= PI1QkE, B
PE, a»A iff AP’ell. PP’ AP E; A
PE, HA«a iff VP’ell. P’ 5%P=P E, A
PE, VxA iff VneA.PFy, A

PF, VXA iff VSeP.PFg iy 5 A

PE, X iff Pec(X)

Closed formulas denote properties:

Ved. VP,Q€ll. {PIPESA} ¢ P

N.B.: P is a commutative quantale and a boolean algebra.

Rules

General pattern:

e Left rules, right rules. Operate mainly on the I - A part.
When operating on constraints (S):
Going up: One adds, the other checks constraints.
Going down: One removes, the other assumes constraints.
They form cut elimination pairs.

e World rules (optional). Operate on the (S) part only.
Embody inversion lemmas.
Going up: add deducible constraints.
Going down: remove redundant constaints.
Commute easily with cuts.

AIB)AOFAAB

6.2 (S u=X1%u=0, X0 X:4 ¥:BFu:94, A
52(S, u=X1%u=0)I, X: 4 ¥:Bru:4 A
42 u=XINC, X4 YV: B u:0Fu:4 A
329 u:(AI1B),u:0Fu:4,A

22T u: (A1 B)AOFu:A A

S:I(S)F,u:(%ICB)/\N-u:CB,A
1O u:(A@IB)AOFuU:AANB, A

(Id) since u=Xx

6.2, (S 10) since X170
52,0L)

42, (IL)

3.2,(nL)

Similarly

2.1,22,(AR)

Ex: Immovable Object vs. Irresistible Force

2 T o(ebj) | T)

Im =
Ir £ T od—(obj()|T)
Im\Ir - (T>OG(bI{)IT)IT AT
= o(ebj{) | T) (A>B) | A+ B
- <o(ebj{) | T) Ar OA
Im\Ir - TI(TD> OO—(ebj{) | T)) AFT
- |:I<>_I(Ob](> | T) O—-A+ oA
- _I<>|:|(Ob]() | T) O0—A - =OA
AAN—-AFF

Hence: Im|Ir+F

